The mechanism by which cyclin-dependent kinase 4 (CDK4) regulates cell cycle progression is not entirely clear. Cyclin D/CDK4 appears to initiate phosphorylation of retinoblastoma protein (Rb) leading to inactivation of the S-phase-inhibitory action of Rb. However, cyclin D/CDK4 has been postulated to act in a noncatalytic manner to regulate the cyclin E/CDK2-inhibitory activity of p27Kip1 by sequestration. In this study we investigated the roles of CDK4 in cell cycle regulation by targeted disruption of the mouse CDK4 gene. CDK4؊/؊ mice survived embryogenesis and showed growth retardation and reproductive dysfunction associated with hypoplastic seminiferous tubules in the testis and perturbed corpus luteum formation in the ovary. These phenotypes appear to be opposite to those of p27-deficient mice such as gigantism and gonadal hyperplasia. A majority of CDK4 ؊/؊ mice developed diabetes mellitus by 6 weeks, associated with degeneration of pancreatic islets. Fibroblasts from CDK4 ؊/؊ mouse embryos proliferated similarly to wild-type embryonic fibroblasts under conditions that promote continuous growth. However, quiescent CDK4 ؊/؊ fibroblasts exhibited a substantial (ϳ6-h) delay in S-phase entry after serum stimulation. This cell cycle perturbation by CDK4 disruption was associated with increased binding of p27 to cyclin E/CDK2 and diminished activation of CDK2 accompanied by impaired Rb phosphorylation. Importantly, fibroblasts from CDK4 ؊/؊ p27 ؊/؊ embryos displayed partially restored kinetics of the G 0 -S transition, indicating the significance of the sequestration of p27 by CDK4. These results suggest that at least part of CDK4's participation in the rate-limiting mechanism for the G 0 -S transition consists of controlling p27 activity.In mammalian cells, the balance of growth-stimulatory and -inhibitory signals regulates the transition between proliferation and quiescence (42). Cyclin-dependent kinases (CDKs) activated by the regulatory subunits, cyclins, control cell cycle progression in all eukaryotes (21, 48, 52). Among several cyclin-CDK complexes, cyclin D-and cyclin E-dependent kinases play critical roles in regulating G 1 progression and entry into S phase. D-type cyclins bind to and activate CDK4 during early to mid-G 1 . This is followed by activation of CDK2 in complex with cyclin E during late G 1 . These two types of CDKs seem to collaborate to determine the rate of the G 1 to S transition (1,40,45). After cells enter S phase, cyclin A binds to and activates CDK2, which is required for maintenance of DNA replication (41). Three D-type cyclins (D1, D2, and D3) are expressed in tissue-specific but overlapping manners (32), whereas CDK4 and CDK2 and cyclins E and A are ubiquitously expressed. D-type cyclins also activate CDK6, a kinase closely related to CDK4 (2, 35). Although CDK6 and CDK4 are coexpressed in many cell types, it is unclear whether these two CDKs have completely overlapping functions.Cyclin D-CDK4 plays an important role in inactivating the S-phase-inhibitory action of the retinobla...
Mammalian RAD51 protein plays essential roles in DNA homologous recombination, DNA repair and cell proliferation. RAD51 activities are regulated by its associated proteins. It was previously reported that a ubiquitin-like protein, UBL1, associates with RAD51 in the yeast two-hybrid system. One function of UBL1 is to covalently conjugate with target proteins and thus modify their function. In the present study we found that non-conjugated UBL1 forms a complex with RAD51 and RAD52 proteins in human cells. Overexpression of UBL1 down-regulates DNA double-strand break-induced homologous recombination in CHO cells and reduces cellular resistance to ionizing radiation in HT1080 cells. With or without overexpressed UBL1, most homologous recombination products arise by gene conversion. However, overexpression of UBL1 reduces the fraction of bidirectional gene conversion tracts. Overexpression of a mutant UBL1 that is incapable of being conjugated retains the ability to inhibit homologous recombination. These results suggest a regulatory role for UBL1 in homologous recombination.
Here we describe the Achilles' Heel Method (AHM), a new function-based approach for identification of inhibitors of signaling pathways, optimized for human cells. The principle of AHM is the identification of 'sensitizing' cDNAs based on their decreased abundance following selection. As a proof of principle, we have employed AHM for the identification of Fas/CD95/APO-1 pathway inhibitors. HeLa cells were transfected with an antisense cDNA expression library in an episomal vector followed by selection with a suboptimal dose of the apoptotic inducer. Antisense inactivation of Fas inhibitors rendered the cells more sensitive to apoptosis resulting in their preferential death and consequent loss of their sensitizing episomes that were identified by subtraction. We show that the resulting products were enriched for sensitizing cDNAs as seven out of eight candidates tested were confirmed as inhibitors of Fas-induced killing either by transfection or by pharmacological inhibition. Furthermore, we demonstrate by multiple approaches that one candidate, NF-E2 related factor 2 (Nrf2), is an inhibitor of Fas-induced apoptosis. Inactivation of Nrf2 by antisense or by a membrane permeable dominantnegative polypeptide sensitized cells while overexpression of Nrf2 protected cells from Fas-induced apoptosis. In addition, dicumarol, an inhibitor of the phase II detoxifying enzyme NQO1, a downstream target of Nrf2, sensitized cells. Nrf2 induces the production of Glutathione (GSH) and we demonstrated that N-acetyl L-cysteine (NAC), a precursor to GSH, protected cells from Fas-mediated killing. Taken together, AHM is a powerful approach for the identification of inhibitors of a signaling pathway with a low rate of false positives that opens new avenues for function profiling of human genes and discovery of new drug targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.