Theory and research suggest that vocal development predicts “useful speech” in preschoolers with autism spectrum disorder (ASD), but conventional methods for measurement of vocal development are costly and time consuming. This longitudinal correlational study examines the reliability and validity of several automated indices of vocalization development relative to an index derived from human coded, conventional communication samples in a sample of preverbal preschoolers with ASD. Automated indices of vocal development were derived using software that is presently “in development” and/or only available for research purposes and using commercially available Language ENvironment Analysis (LENA) software. Indices of vocal development that could be derived using the software available for research purposes: (a) were highly stable with a single day-long audio recording, (b) predicted future spoken vocabulary to a degree that was nonsignificantly different from the index derived from conventional communication samples, and (c) continued to predict future spoken vocabulary even after controlling for concurrent vocabulary in our sample. The score derived from standard LENA software was similarly stable, but was not significantly correlated with future spoken vocabulary. Findings suggest that automated vocal analysis is a valid and reliable alternative to time intensive and expensive conventional communication samples for measurement of vocal development of preverbal preschoolers with ASD in research and clinical practice.
Diversity of key consonants used in communication (DKCC) is a value-added predictor of expressive language growth in initially preverbal children with autism spectrum disorder (ASD). Studying the predictors of DKCC growth in young children with ASD might inform treatment of this under-studied aspect of prelinguistic development. Eighty-seven initially preverbal preschoolers with ASD and their parents were observed at five measurement periods. In this longitudinal correlational investigation, we found that child intentional communication acts and parent linguistic responses to child leads predicted DKCC growth, after controlling for two other predictors and two background variables. As predicted, receptive vocabulary mediated the association between the value-added predictors and endpoint DKCC.
Purpose Differences in communication development impact long-term outcomes of children with autism. Previous research has identified factors associated with communication in children with autism, but much of the variance in communication skill remains unexplained. It has been proposed that early differences in sensory responsiveness (i.e., hyporesponsiveness, hyperresponsiveness, and sensory seeking) may produce “cascading effects” on communication. Evidence for this theory is limited, however, as relations between sensory responsiveness and communication in the earliest stages of development have not been well established. The purpose of this study was to evaluate (a) whether infants with a heightened likelihood of autism diagnosis (i.e., infants with an older sibling with autism) differ from infants at general population–level likelihood of autism (i.e., infants with an older, nonautistic sibling) on patterns of sensory responsiveness, (b) whether early sensory responsiveness is correlated with concurrent communication, and (c) whether the aforementioned between-groups differences and associations are moderated by age. Method Participants were 40 infants (20 infants with an older sibling with autism, 20 infants with an older, nonautistic sibling) aged 12–18 months. A series of observational and parent report measures of sensory responsiveness and communication skill were administered. Results Group differences in sensory responsiveness across the 12- to 18-month period were limited (i.e., only observed for one measure of hyporesponsiveness), though selected differences in sensory responsiveness (i.e., parent-reported hyperresponsiveness and sensory seeking) emerged between groups over this developmental window. Parent-reported hyporesponsiveness was unconditionally, negatively associated with communication skills. Associations between expressive communication and (a) parent-reported sensory seeking and (b) an observational measure of hyperresponsiveness were moderated by age. Conclusions This study provides new insights into the nature of sensory responsiveness and theorized links with communication skill in infants at elevated and general population–level likelihood of autism diagnosis. Further work is needed to better characterize the effects of interest in a larger sample spanning a wider age range. Supplemental Material https://doi.org/10.23641/asha.14515542
Purpose We examined associations between vocal communication with canonical syllables and expressive language and then examined 2 potential alternative explanations for such associations. Method Specifically, we tested whether the associations remained when excluding canonical syllables in identifiable words and controlling for the number of communication acts. Participants included 68 preverbal or low verbal children with autism spectrum disorder ( M age = 35.26 months). Results Vocal communication with canonical syllables and expressive language were concurrently and longitudinally associated with moderate to strong ( R 2 s = .13–.70) and significant ( p s < .001) effect sizes. Even when excluding spoken words from the vocal predictor and controlling for the number of communication acts, vocal communication with canonical syllables predicted expressive language. Conclusions The findings provide increased support for measuring vocal communication with canonical syllables and for examining a causal relation between vocal communication with canonical syllables and expressive language in children with ASD who are preverbal or low verbal. In future studies, it may be unnecessary to eliminate identifiable words when measuring vocal communication in this population. Following replication, vocal communication with canonical syllables may be considered when making intervention- planning decisions.
Objectives: This study examined whether remote microphone (RM) systems improved listening-in-noise performance in youth with autism. We explored effects of RM system use on both listening-in-noise accuracy and listening effort in a well-characterized sample of participants with autism. We hypothesized that listening-in-noise accuracy would be enhanced and listening effort reduced, on average, when participants used the RM system. Furthermore, we predicted that effects of RM system use on listening-in-noise accuracy and listening effort would vary according to participant characteristics. Specifically, we hypothesized that participants who were chronologically older, had greater nonverbal cognitive and language ability, displayed fewer features of autism, and presented with more typical sensory and multisensory profiles might exhibit greater benefits of RM system use than participants who were younger, had less nonverbal cognitive or language ability, displayed more features of autism, and presented with greater sensory and multisensory disruptions. Design:We implemented a within-subjects design to investigate our hypotheses, wherein 32 youth with autism completed listening-in-noise testing with and without an RM system. Listening-in-noise accuracy and listening effort were evaluated simultaneously using a dual-task paradigm for stimuli varying in complexity (i.e., syllable-, word-, sentence-, and passage-level). In addition, several putative moderators of RM system effects (i.e., sensory and multisensory function, language, nonverbal cognition, and broader features of autism) on outcomes of interest were evaluated.Results: Overall, RM system use resulted in higher listening-in-noise accuracy in youth with autism compared with no RM system use. The observed benefits were all large in magnitude, although the benefits on average were greater for more complex stimuli (e.g., key words embedded in sentences) and relatively smaller for less complex stimuli (e.g., syllables). Notably, none of the putative moderators significantly influenced the effects of the RM system on listening-in-noise accuracy, indicating that RM system benefits did not vary according to any of the participant characteristics assessed. On average, RM system use did not have an effect on listening effort across all youth with autism compared with no RM system use but instead yielded effects that varied according to participant profile. Specifically, moderated effects indicated that RM system use was associated with increased listening effort for youth who had (a) average to below-average nonverbal cognitive ability, (b) belowaverage language ability, and (c) reduced audiovisual integration. RM system use was also associated with decreased listening effort for youth with very high nonverbal cognitive ability. Conclusions:This study extends prior work by showing that RM systems have the potential to boost listening-in-noise accuracy for youth with autism. However, this boost in accuracy was coupled with increased listening effort, as indexed by longer...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.