SummaryThe first adult-repopulating hematopoietic stem cells (HSCs) emerge in the aorta-gonads-mesonephros (AGM) region of the embryo. We have recently identified the transcription factor Gata3 as being upregulated in this tissue specifically at the time of HSC emergence. We now demonstrate that the production of functional and phenotypic HSCs in the AGM is impaired in the absence of Gata3. Furthermore, we show that this effect on HSC generation is secondary to the role of Gata3 in the production of catecholamines, the mediators of the sympathetic nervous system (SNS), thus making these molecules key components of the AGM HSC niche. These findings demonstrate that the recently described functional interplay between the hematopoietic system and the SNS extends to the earliest stages of their codevelopment and highlight the fact that HSC development needs to be viewed in the context of the development of other organs.
Food and beverages contain protein glycation adducts--both early-stage adducts and advanced glycation endproducts. We determined the concentrations of glycation adducts in selected food and beverages by liquid chromatography with triple quadrupole mass spectrometric detection. Cola drink contained low concentrations of glycation free adducts, whereas pasteurised and sterilised milk were rich sources of heat-stable glycation adduct residues--Nepsilon-carboxymethyl-lysine and Nepsilon-carboxyethyl-lysine. Laboratory rodent food was a rich source of advanced glycation endproducts. Measurement of glycation adducts in 24 h urine samples of normal and diabetic rats indicated that < 10% of glycation adduct residue consumption was excreted. Induction of diabetes by streptozotocin led to a 2-fold increase in urinary excretion of Nepsilon-carboxymethyl-lysine and a 27-fold increase in urinary excretion of methylglyoxal-derived hydroimidazolone Ndelta-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine - the latter was decreased by high-dose thiamine therapy that also prevented the development of nephropathy. We conclude that cola drinks are a poor source of glycation adduct whereas thermally processed milk is rich in glycation adducts. Dietary glycation adducts residues probably have low bioavailability. Experimental diabetes is associated with a marked increase in exposure to endogenous formation of methylglyoxal-derived hydroimidazolone which is linked to the development of diabetic nephropathy.
The first mouse adult-repopulating hematopoietic stem cells emerge in the aorta-gonad-mesonephros region at embryonic day (E) 10.5. Their numbers in this region increase thereafter and begin to decline at E12.5, thus pointing to the possible existence of both positive and negative regulators of emerging hematopoietic stem cells. Our recent expression analysis of the aorta-gonad-mesonephros region showed that the Delta-like homologue 1 (Dlk1) gene is up-regulated in the region of the aorta-gonad-mesonephros where hematopoietic stem cells are preferentially located. To analyze its function, we studied Dlk1 expression in wild-type and hematopoietic stem cell-deficient embryos and determined hematopoietic stem and progenitor cell activity in Dlk1 knockout and overexpressing mice. Its role in hematopoietic support was studied in co-culture experiments using stromal cell lines that express varying levels of Dlk1. We show here that Dlk1 is expressed in the smooth muscle layer of the dorsal aorta and the ventral sub-aortic mesenchyme, where its expression is dependent on the hematopoietic transcription factor Runx1. We further demonstrate that Dlk1 has a negative impact on hematopoietic stem and progenitor cell activity in the aorta-gonad-mesonephros region in vivo, which is recapitulated in co-cultures of hematopoietic stem cells on stromal cells that express varying levels of Dlk1. This negative effect of Dlk1 on hematopoietic stem and progenitor cell activity requires the membrane-bound form of the protein and cannot be recapitulated by soluble Dlk1. Together, these data suggest that Dlk1 expression by cells of the aorta-gonad-mesonephros hematopoietic microenvironment limits hematopoietic stem cell expansion and is, to our knowledge, the first description of such a negative regulator in this tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.