Within the last decade, research on torrefaction has gained increasing attention due to its ability to improve the physical properties and chemical composition of biomass residues for further energetic utilisation. While most of the research works focused on improving the energy density of the solid fraction to offer an ecological alternative to coal for energy applications, little attention was paid to the valorisation of the condensable gases as platform chemicals and its ecological relevance when compared to conventional production processes. Therefore, the present study focuses on the ecological evaluation of an innovative biorefinery concept that includes superheated steam drying and the torrefaction of biomass residues at ambient pressure, the recovery of volatiles and the valorisation/separation of several valuable platform chemicals. For a reference case and an alternative system design scenario, the ecological footprint was assessed, considering the use of different biomass residues. The results show that the newly developed process can compete with established bio-based and conventional production processes for furfural, 5-HMF and acetic acid in terms of the assessed environmental performance indicators. The requirements for further research on the synthesis of other promising platform chemicals and the necessary economic evaluation of the process were elaborated.
Up to now biorefinery concepts can hardly compete with the conventional production of fossil-based chemicals. On one hand, conventional chemical production has been optimised over many decades in terms of energy, yield and costs. Biorefineries, on the other hand, do not have the benefit of long-term experience and therefore have a huge potential for optimisation. This study deals with the economic evaluation of a newly developed biorefinery concept based on superheated steam (SHS) torrefaction of biomass residues with recovery of valuable platform chemicals. Two variants of the biorefinery were economically investigated. One variant supplies various platform chemicals and torrefied biomass. The second variant supplies thermal energy for external consumers in addition to platform chemicals. The results show that both variants can be operated profitably if the focus of the platform chemicals produced is on high quality and thus on the higher-priced segment. The economic analysis gives clear indications of the most important financial influencing parameters. The economic impact of integration into existing industrial structures is positive. With the analysis, a viable business model can be developed. Based on the results of the present study, an open-innovation platform is recommended for the further development and commercialisation of the novel biorefinery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.