Background: Escherichia coli is one of the most frequent causes of many common bacterial infections. As a potential reservoir, hospital wastewater is considered for the dissemination of bacterial pathogens such as E. coli. Therefore, research on hospital waste’s bacteria by low-cost, rapid and easy molecular typing methods such as multilocus variable-number tandem-repeat analysis (MLVA) can be helpful for the study of epidemics. Methods: E. coli strains were isolated from hospital wastewater sources in Tehran, Iran, over a 24-month sampling period (Jun 2014- Jun 2016) and identified by standard bacteriological methods. The diversity of repeated sequences of seven variable-number tandem-repeat (VNTR) loci was studied by MLVA method base on polymerase chain reaction (PCR). Results: Overall, 80 E. coli isolates were discriminated into 51 different genotypes. Analysis of the MLVA profiles using a minimum spanning tree (MST) algorithm showed two clonal complexes with 71 isolates and only nine isolates were stayed out of clonal complexes in the form of a singleton. High genotypic diversity was seen among E. coli strains isolated from hospital wastewaters; however, a large number of isolates showed a close genetic relationship. Conclusion: MLVA showed to be a rapid, inexpensive and useful tool for the analysis of the phylogenetic relationships between E. coli strains under the study
The aims of this study were the molecular characterization of antibiotic resistance and genotyping of Klebsiella pneumoniae strains isolated from clinical cases in Tehran, Iran. A total of 100 different types of clinical human samples were collected from a major teaching hospital in Tehran, Iran. Bacterial isolates were identified using standard microbiological tests. Antimicrobial susceptibility testing was done according to the latest CLSI guidelines. PCR was used to amplify the gyrA gene in quinolone-resistant isolates and sequencing was performed for the detection of probable mutations between the isolates. The occurrence of plasmid-mediated quinolone resistance genes (qnrA, qnrB, and qnrS) was also investigated by PCR. Finally, genotyping of the strains was performed by PFGE in a standard condition. The susceptibility pattern revealed a high and low level of resistance against meropenem (20%) and trimethoprim (37%), respectively. PCR and sequencing detected mutation in the gyrA gene in 51% of quinolone-resistant K. pneumoniae. According to the susceptibility report, among nalidixic acid-resistant strains, 60.5%, 50%, and 42.9% of isolates contained qnrA, qnrB, and qnrS, respectively. Among ciprofloxacin-resistant strains, qnrA was the most frequent PMQR gene. The PFGE differentiated the strains into 31 different genetic clusters so that the highest number (7/66) was in category A. Our results indicated that the frequency of resistance to various antibiotics particularly trimethoprim, nalidixic acid, and cefoxitin are increasing. The presence of qnr (S and A) genes and point mutation of the gyrA gene were likely to be responsible for the resistance toward nalidixic acid and ciprofloxacin in our strains. Also, the results obtained from genotyping indicated that the K. pneumoniae strains isolated in this study belonged to the diverse clones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.