A Constraint Satisfaction Problem (CSP) is a powerful framework for representing and solving constraint problems. When solving a CSP using a backtrack search method, one important factor that reduces the size of the search space drastically is the order in which variables and values are examined. Many heuristics for static and dynamic variable ordering have been proposed and the most popular and powerful are those that gather information about the failures during the constraint propagation phase, in the form of constraint weights. These later heuristics are called conflict driven heuristics. In this paper, we propose two of these heuristics respectively based on Hill Climbing (HC) and Ant Colony Optimization (ACO) for weighing constraints. In addition, we propose two new value ordering techniques, respectively based on HC and ACO, that rank the values based on their ability to satisfy the constraints attached to their corresponding variables. Several experiments were conducted on various types of problems including random, quasi random and patterned problems. The results show that the proposed variable ordering heuristics, are successful especially in the case of hard random problems. Also, when using the proposed value and variable ordering together, we can improve the performance particularly in the case of random problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.