In this paper, the lifetime model based on series systems with a random number of components from the family of power series distributions has been considered. First, some basic theoretical results have been obtained, which have been used to optimize the number of components in series systems. The average lifetime of the system, the cost function, and the total time on test have been used as an objective function in optimization. The issue has been investigated in detail when the lifetimes of system components have Weibull distribution, and the number of components has geometric, logarithmic, or zero-truncated Poisson distributions. The results have been given analytically and numerically. Finally, a real data set has been used to illustrate the obtained results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.