Adoptive transfer of virus-specific T cells (VSTs) has been shown to be safe and effective in stem cell transplant recipients. However, the lack of virus-experienced T cells in donor cord blood (CB) has prevented the development of ex vivo expanded donor-derived VSTs for recipients of this stem cell source. Here we evaluated the feasibility and safety of ex vivo expansion of CB T cells from the 20% fraction of the CB unit in pediatric patients receiving a single CB transplant (CBT). In 2 clinical trials conducted at 2 separate sites, we manufactured CB-derived multivirus-specific T cells (CB-VSTs) targeting Epstein-Barr virus (EBV), adenovirus, and cytomegalovirus (CMV) for 18 (86%) of 21 patients demonstrating feasibility. Manufacturing for 2 CB-VSTs failed to meet lot release because of insufficient cell recovery, and there was 1 sterility breach during separation of the frozen 20% fraction. Delayed engraftment was not observed in patients who received the remaining 80% fraction for the primary CBT. There was no grade 3 to 4 acute graft-versus-host disease (GVHD) associated with the infusion of CB-VSTs. None of the 7 patients who received CB-VSTs as prophylaxis developed end-organ disease from CMV, EBV, or adenovirus. In 7 patients receiving CB-VSTs for viral reactivation or infection, only 1 patient developed end-organ viral disease, which was in an immune privileged site (CMV retinitis) and occurred after steroid therapy for GVHD. Finally, we demonstrated the long-term persistence of adoptively transferred CB-VSTs using T-cell receptor-Vβ clonotype tracking, suggesting that CB-VSTs are a feasible addition to antiviral pharmacotherapy.
Childhood rhabdomyosarcoma (RMS) accounts for approximately 3.5% of cancer cases among children 0 to 14 years of age. Genetic conditions associated with high risk of childhood RMS include Li-Fraumeni syndrome, pleuropulmonary blastoma, Beckwith-Wiedemann syndrome, and some RASopathies, such as neurofibromatosis type 1, Costello syndrome (CS), and Noonan syndrome (NS). Here, we report the rare case of a 4-year-old girl with clinical features of NS who developed an embryonal RMS of the chest and needed emergent treatment. Molecular genetic testing identified a de novo, large, mosaic duplication of chromosome 2 encompassing the SOS1 gene, presumably caused by a mosaic, unbalanced translocation between chromosomes 2 and 17 found on routine cytogenetic analysis. Sequence analysis of all known genes causing Noonan spectrum disorders was negative. RMS has been reported in a few patients with NS, associated in very few with germline SOS1 mutations, but none with copy number abnormalities. This is the first report to our knowledge of early-onset RMS developing in a child with features of NS and a mosaic RAS pathway gene aberration, a large SOS1 duplication. We hypothesize that the inciting event for tumor development in this case is due to the germline mosaic duplication of SOS1, which was duplicated in all cells of the tumor, and the ultimate development of the tumor was further driven by multiple chromosomal aberrations in the tumor itself, all described as somatic events in isolated RMS tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.