Severe COVID-19 patients show various immunological abnormalities including T-cell reduction and cytokine release syndrome, which can be fatal and is a major concern of the pandemic. However, it is poorly understood how T-cell dysregulation can contribute to the pathogenesis of severe COVID-19. Here we show single cell-level mechanisms for T-cell dysregulation in severe COVID-19, demonstrating new pathogenetic mechanisms of T-cell activation and differentiation underlying severe COVID-19. By in silico sorting CD4+ T-cells from a single cell RNA-seq dataset, we found that CD4+ T-cells were highly activated and showed unique differentiation pathways in the lung of severe COVID-19 patients. Notably, those T-cells in severe COVID-19 patients highly expressed immunoregulatory receptors and CD25, whilst repressing the expression of FOXP3. Furthermore, we show that CD25 + hyperactivated T-cells differentiate into multiple helper T-cell lineages, showing multifaceted effector T-cells with Th1 and Th2 characteristics. Lastly, we show that CD25-expressing hyperactivated T-cells produce the protease Furin, which facilitates the viral entry of SARS-CoV-2. Collectively, CD4 + T-cells from severe COVID-19 patients are hyperactivated and FOXP3-mediated negative feedback mechanisms are impaired in the lung, which may promote immunopathology. Therefore, our study proposes a new model of T-cell hyperactivation and paralysis that drives immunopathology in severe COVID-19.
T-cells play key roles in immunity to COVID-19 as well as the development of severe disease. T-cell immunity to COVID-19 is mediated through differentiated CD4 + T-cells and cytotoxic CD8 + T-cells, although their differentiation is often atypical and ambiguous in COVID-19 and single cell dynamics of key genes need to be characterized. Notably, T-cells are dysregulated in severe COVID-19 patients, although their molecular features are still yet to be fully revealed. Importantly, it is not clear which T-cell activities are beneficial and protective and which ones can contribute to the development of severe COVID-19. In this article, we examine the latest evidence and discuss the key features of T-cell responses in COVID-19, showing how T-cells are dysregulated in severe COVID-19 patients. Particularly, we highlight the impairment of FOXP3 induction in CD4 + T-cells and how the impaired FOXP3 expression can lead to the differentiation of abnormally activated (hyperactivated) T-cells and the dysregulated T-cell responses in severe patients. Furthermore, we characterise the feature of hyperactivated T-cells, showing their potential contribution to T-cell dysregulation and immune-mediated tissue destruction (immunopathology) in COVID-19.
Severe COVID-19 patients can show respiratory failure, T-cell reduction, and cytokine release syndrome (CRS), which can be fatal in both young and aged patients and is a major concern of the pandemic. However, the pathogenetic mechanisms of CRS in COVID-19 are poorly understood. Here we show single cell-level mechanisms for T-cell dysregulation in severe SARS-CoV-2 infection, and thereby demonstrate the mechanisms underlying T-cell hyperactivation and paralysis in severe COVID-19 patients. By in silico sorting CD4+ T-cells from a single cell RNA-seq dataset, we found that CD4+ T-cells were highly activated and showed unique differentiation pathways in the lung of severe COVID-19 patients. Notably, those T-cells in severe COVID-19 patients highly expressed immunoregulatory receptors and CD25, whilst repressing the expression of the transcription factor FOXP3 and interestingly, both the differentiation of regulatory T-cells (Tregs) and Th17 was inhibited. Meanwhile, highly activated CD4 + T-cells express PD-1 alongside macrophages that express PD-1 ligands in severe patients, suggesting that PD-1-mediated immunoregulation was partially operating. Furthermore, we show that CD25 + hyperactivated T-cells differentiate into multiple helper T-cell lineages, showing multifaceted effector T-cells with Th1 and Th2 characteristics. Lastly, we show that CD4 + T-cells, particularly CD25-expressing hyperactivated T-cells, produce the protease Furin, which facilitates the viral entry of SARS-CoV-2. Collectively, CD4 + T-cells from severe COVID-19 patients are hyperactivated and FOXP3-mediated negative feedback mechanisms are impaired in the lung, while activated CD4 + T-cells continue to promote further viral infection through the production of Furin.Therefore, our study proposes a new model of T-cell hyperactivation and paralysis that drives pulmonary damage, systemic CRS and organ failure in severe COVID-19 patients.
The blockade of the immune checkpoints PD-1 and CTLA-4 enhances T cell response. However, it is largely unknown how antigen-reactive T cells regulate their checkpoint expression in vivo and whether and how the checkpoint blockade can change activation dynamics of tumour-reactive T cells. To address this, here we used Nr4a3-Timer-of-cell-kinetics-and-activity (Tocky), which allows analysis of temporal changes of activated T cells following TCR signalling in vivo. By analysing melanoma-bearing Nr4a3 Tocky mice, we elucidate hidden dynamics of tumour-reactive T cells in the steady-state. Checkpoint blockade depleted highly activated effector Treg, while promoting unique effector T cell populations, and thus differentially modulating activation of tumour-reactive T cell populations. Furthermore, multidimensional analysis and seamless analysis of Tocky and scRNA-seq revealed a full spectrum of T cell dynamics in response to tumour burden and treatment with checkpoint blockade. Lastly, we propose a rational design of combinatorial therapy to further enhance T cell activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.