Video retrieval can be done by ranking the samples according to their probability scores that were predicted by classifiers. It is often possible to improve the retrieval performance by re-ranking the samples. In this paper, we proposed a re-ranking method that improves the performance of semantic video indexing and retrieval, by re-evaluating the scores of the shots by the homogeneity and the nature of the video they belong to. Compared to previous works, the proposed method provides a framework for the re-ranking via the homogeneous distribution of video shots content in a temporal sequence. The experimental results showed that the proposed re-ranking method was able to improve the system performance by about 18% in average on the TRECVID 2010 semantic indexing task, videos collection with homogeneous contents. For TRECVID 2008, in the case of collections of videos with non-homogeneous contents, the system performance was improved by about 11-13%.
In this paper, we propose and evaluate a method for optimizing descriptors used for content-based multimedia indexing and retrieval. A large variety of descriptors are commonly used for this purpose. However, the most efficient ones often have characteristics preventing them to be easily used in large scale systems. They may have very high dimensionality (up to tens of thousands dimensions) and/or be suited for a distance costly to compute (e.g. χ 2). The proposed method combines a PCA-based dimensionality reduction with pre-and post-PCA non-linear transformations. The resulting transformation is globally optimized. The produced descriptors have a much lower dimensionality while performing at least as well, and often significantly better, with the Euclidean distance than the original high dimensionality descriptors with their optimal distance. The method has been validated and evaluated for a variety of descriptors using TRECVid 2010 semantic indexing task data. It has then be applied at large scale for the TRECVid 2012 semantic indexing task on tens of descriptors of various types and with initial dimensionalities from 15 up to 32,768. The same transformation can be used also for multimedia retrieval in the context of query by example and/or relevance feedback.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.