Objective. Vaccinium genus plants have medicinal value, of which Vaccinium arctostaphylos (Caucasian whortleberry or Qare-Qat in the local language) is the only available species in Iran. Public tendency to use herbal remedies and natural products such as synthesized nanoparticles is increasing due to the proof of the destructive side effects of chemical drugs. Nanosilver products have been effective against more than 650 microbe types. This study was aimed at assessing the possibility of green synthesis of silver nanoparticles using Vaccinium arctostaphylos aqueous extract and at evaluating its antibacterial properties, as well. Materials and Methods. In order to synthesize silver nanoparticles, different volumes of Vaccinium arctostaphylos aqueous extract (3, 5, 10, 15, and 30 ml) were assessed with different silver nitrate solution concentrations (0.5, 1, 3, 5, and 10 mM) and different reaction time durations (1, 3, 5, 10, and 20 minutes) at room temperature using a rotary shaker with a speed of 150 rpm. Ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction analysis (XRD), Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM) were carried out. The antibacterial activity of the aqueous extract and the synthesized nanoparticles was evaluated, as well. Results. Silver nanoparticle formation process was confirmed with XRD analysis, transmission electron microscopy (TEM), and FTIR spectroscopy. The UV-Vis spectroscopy of silver colloidal nanoparticles showed a surface plasmon resonance peak at 443 nm under optimal conditions (3 ml aqueous extract volume, 1 mM silver nitrate solution concentration, and 3 min reaction time under sunlight exposure). The reduction of silver ions to silver nanoparticles in solution was confirmed, as well. Based on X-ray diffraction analysis, the size of silver nanoparticles was in the range of 7-16 nm. TEM images showed an even distribution of silver nanoparticles, with a spherical shape. FTIR spectroscopy demonstrated the presence of different functional groups of oxygenated compounds such as carboxyl, hydroxyl, and nitrogenous groups. The antibacterial properties of the synthesized nanoparticles were confirmed. Conclusion. The synthesized nanoparticles showed more antibacterial properties against gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus) than gram-negative ones (Escherichia coli and Salmonella enteritidis).
The most important inhibitors used in bronze disease are BTA and AMT. While these inhibitors control corrosion, they are toxic and cancerous. In this study, the acacia fruit extract (200 ppm to 1800 ppm) was used to the prevention of corrosion inhibition of bronze alloy in corrosive sodium chloride solution 0.5 M, for 4 weeks consecutively. The Bronze alloy used in this research, was made based on the same percentage as the ancient alloys (Cu-10Sn). IE% was used to obtain the inhibitory efficiency percentage and Rp can be calculated from the resistance of polarization. SEM–EDX was used to evaluate the surfaces of alloy as well as inhibitory. The experiment was conducted in split plot design in time based on the RCD in four replications. ANOVA was performed and comparison of means square using Duncan's multiple range test at one percent probability level. The highest rate of corrosion inhibition (93.5%) was obtained at a concentration of 1800 ppm with an increase in the concentration of the extract, corrosion inhibition also increased, i.e., more bronze was prevented from burning. Also, the highest corrosion inhibitory activity of Acacia extract (79.66) was in the second week and with increasing duration, this effect has decreased. EDX analysis of the control sample matrix showed that the amount of chlorine was 8.47%wt, while in the presence of corrosive sodium chloride solution, after 4 weeks, the amount of chlorine detected was 3.20%wt. According to the morphology (needle and rhombus) of these corrosion products based on the SEM images, it can be said, they are the type of atacamite and paratacamite. They have caused bronze disease in historical bronze works. The green inhibitor of Acacia fruit aqueous extract can play an effective role in inhibiting corrosion of bronze, but at higher concentrations, it became fungal, which can reduce the role of Acacia fruit aqueous extract and even ineffective. To get better performance of green inhibitors, more tests need to be done to improve and optimize.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.