This paper studies the continuous-time distributed optimization of a sum of convex functions over directed graphs. Contrary to what is known in the consensus literature, where the same dynamics works for both undirected and directed scenarios, we show that the consensus-based dynamics that solves the continuous-time distributed optimization problem for undirected graphs fails to converge when transcribed to the directed setting. This study sets the basis for the design of an alternative distributed dynamics which we show is guaranteed to converge, on any strongly connected weightbalanced digraph, to the set of minimizers of a sum of convex differentiable functions with globally Lipschitz gradients. Our technical approach combines notions of invariance and cocoercivity with the positive definiteness properties of graph matrices to establish the results.
We investigate the vulnerabilities of consensus-based distributed optimization protocols to nodes that deviate from the prescribed update rule (e.g., due to failures or adversarial attacks). We first characterize certain fundamental limitations on the performance of any distributed optimization algorithm in the presence of adversaries. We then propose a resilient distributed optimization algorithm that guarantees that the non-adversarial nodes converge to the convex hull of the minimizers of their local functions under certain conditions on the graph topology, regardless of the actions of a certain number of adversarial nodes. In particular, we provide sufficient conditions on the graph topology to tolerate a bounded number of adversaries in the neighborhood of every non-adversarial node, and necessary and sufficient conditions to tolerate a globally bounded number of adversaries. For situations where there are up to F adversaries in the neighborhood of every node, we use the concept of maximal F -local sets of graphs to provide lower bounds on the distanceto-optimality of achievable solutions under any algorithm. We show that finding the size of such sets is NP-hard.
This paper studies the continuous-time distributed optimization of a sum of convex functions over directed graphs. Contrary to what is known in the consensus literature, where the same dynamics works for both undirected and directed scenarios, we show that the consensus-based dynamics that solves the continuous-time distributed optimization problem for undirected graphs fails to converge when transcribed to the directed setting. This study sets the basis for the design of an alternative distributed dynamics which we show is guaranteed to converge, on any strongly connected weightbalanced digraph, to the set of minimizers of a sum of convex differentiable functions with globally Lipschitz gradients. Our technical approach combines notions of invariance and cocoercivity with the positive definiteness properties of graph matrices to establish the results.
Abstract. This paper considers continuously differentiable functions of two vector variables that have (possibly a continuum of) min-max saddle points. We study the asymptotic convergence properties of the associated saddle-point dynamics (gradient-descent in the first variable and gradientascent in the second one). We identify a suite of complementary conditions under which the set of saddle points is asymptotically stable under the saddle-point dynamics. Our first set of results is based on the convexity-concavity of the function defining the saddle-point dynamics to establish the convergence guarantees. For functions that do not enjoy this feature, our second set of results relies on properties of the linearization of the dynamics, the function along the proximal normals to the saddle set, and the linearity of the function in one variable. We also provide global versions of the asymptotic convergence results. Various examples illustrate our discussion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.