Rabinowitz-Floer homology is the semi-infinite dimensional Morse-Bott homology in the sense of Floer of the Rabinowitz action functional introduced by Kai Cieliebak and Urs Frauenfelder in 2009. In our work, we consider a generalisation of this theory to a Rabinowitz-Floer homology of a Liouville automorphism. As an application we show the existence of noncontractible periodic Reeb orbits on bases of universal coverings. In particular, our theory applies to lens spaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.