Puccinia triticina (Pt) is a representative of several cereal-infecting rust fungal pathogens of major economic importance world wide. Upon entry through leaf stomata, these fungi establish intracellular haustoria, crucial feeding structures. We report the first proteome of infection structures from parasitized wheat leaves, enriched for haustoria through filtration and sucrose density centrifugation. 2-D PAGE MS/MS and gel-based LC-MS (GeLC-MS) were used to separate proteins. Generated spectra were compared with a partial proteome predicted from a preliminary Pt genome and generated ESTs, to a comprehensive genome-predicted protein complement from the related wheat stem rust fungus, Puccinia graminis f. sp. tritici (Pgt) and to various plant resources. We identified over 260 fungal proteins, 16 of which matched peptides from Pgt. Based on bioinformatic analyses and/or the presence of a signal peptide, at least 50 proteins were predicted to be secreted. Among those, six have effector protein signatures, some are related and the respective genes of several seem to belong to clusters. Many ribosomal structural proteins, proteins involved in energy, general metabolism and transport were detected. Measuring gene expression over several life cycle stages of ten representative candidates using quantitative RT-PCR, all were shown to be strongly upregulated and four expressed solely upon infection.
Lignin is an important biopolymer that is deposited in secondary cell walls of plant cells (e.g., tracheary elements) and in response to stresses such as wounding. Biosynthesis of lignin monomers occurs via the phenylpropanoid pathway, in which the enzyme 4-coumarate:CoA ligase (4CL) plays a key role by catalyzing the formation of hydroxycinnamoyl-CoA esters, subsequently reduced to the corresponding monolignols (hydroxycinnamoyl alcohols). 4CL is encoded by a family of four genes in Arabidopsis thaliana (At4CL1-At4CL4), which are developmentally regulated and co-expressed with other phenylpropanoid genes. We investigated in detail the wound-induced expression of At4CL1-At4CL4, and found that At4CL1 and At4CL2 mRNA accumulation follows biphasic kinetics over a period of 72 h, while At4CL4 expression is rapidly activated for a period of at least 12 h before declining. In order to localize cis-regulatory elements involved in the developmental and wound-induced regulation of the At4CL gene family members, At4CL promoter-beta-glucuronidase (GUS) reporter gene fusions were constructed and transferred into Arabidopsis plants. Analysis of these plants revealed that the promoter fragments direct discrete and distinct patterns of expression, some of which did not recapitulate expected patterns of wound-induced expression. The locations of regulatory elements associated with the At4CL2 gene were investigated in detail using a series of transgenic Arabidopsis plants containing promoter fragments and parts of the transcribed region of the gene fused to GUS. Positive and negative regulatory elements effective in modulating developmental expression or wound responsiveness of the gene were located both in the promoter and transcribed regions of the At4CL2 gene.
Breast cancer represents the most common malignancy in women worldwide and the ErbB/PI3K pathway has been found to play a crucial role in regulation of the cancer cell growth. MicroRNAs have been implicated in regulating diverse cellular pathways and therefore, understanding the link between the regulatory microRNAs and the ErbB/PI3K signaling pathway could potentially be helpful for breast cancer prevention and treatment. The aim of this study is to examine the regulatory effect of miR-326 on ErbB/PI3K signaling pathway in breast cancer development and progression. The results of qRT-PCR, RNA seq, and array data indicated that miR-326 was remarkably down-regulated in breast tumor tissues and correlated with poor survival outcome. Importantly, very low levels of miR-326 expression were found in aggressive breast cells compared to less-aggressive cell types. Mechanistically, a gene network including EGFR, ErbB2, ErbB3, AKT1, AKT2 , and AKT3 targeted by miR-326, thereby providing suppression of ErbB/PI3K pathway, detected by RT-qPCR, and dual luciferase assay. In addition, Western blot analysis revealed that miR-326 upregulation decreased PI3K signaling activity by decreasing total AKT and p-AKT protein level in SKBR3 cell lines. Interestingly, up regulation of ErbB2 rescued the effect of miR-326 on miR-326 target genes. Further functional assays demonstrated that up regulation of miR-326 significantly suppressed cell growth as evidenced by cell cycle, cell cycle associated genes expression, colony formation and MTT assays and induced apoptosis, detected by Annexin V-PI. In addition, EMT markers RT-qPCR, scratch, and Transwell assays showed inhibited cellular migration and invasion following miR-326 upregulation. Altogether, our results revealed that miR-326 play a tumor-suppressive role in breast cancer through inhibiting ErbB/PI3K pathway and miR-326 may serve as a potential therapeutic target for the treatment of patients with breast cancer.
Streptomyces commonly produce ectoines as compatible solutes to prevent osmotic stresses. Fine structure of the genes producing ectoine (ectC) and hydroxyectoine (ectD) enzymes in Streptomyces rimosus C-2012 as a slightly halophilic bacterium is reported in this study. Deduced amino acid sequences of ectC and ectD genes from strain C-2012 and some other related species were compared and 72-90% and 13-81% identities were detected for ectC and ectD, respectively. High similarity of ectC between closely or distantly related Streptomyces to the strain C-2012 may indicate horizontal transfer of this gene. However, phylogenetic relationships of ectD were correlated with phylogenetic affiliation of the strains. It suggests that the ability of Streptomyces to produce hydroxyectoine has been the result of a vertical transfer event. HPLC analysis showed that strain C-2012 was able to produce ectoine and hydroxyectoine both in the presence and absence of external salinity (up to 0.45 M NaCl). Accordingly, reverse transcription quantitative PCR (RT-qPCR) showed that ectABCD operon in this strain is positively affected by salt. Also, inductive effect of the salt was increased when it was applied with 1 mM of ectoines. Transcription level of ectC was increased 2.7- and 2.9-fold in the medium supplied with salt and ectoine and salt and hydroxyectoine, respectively. The effect of salinity with or without ectoines was more on ectD transcription level than that of ectC. In S. rimosus under salt stress, ectoine and hydroxyectoine biosynthesis primarily depends on the stimulation of ectABCD operon transcription. However, drastic accumulation of ectoine and hydroxyectoine without increase in ectC and ectD transcripts was observed in the medium supplied with salt and ectoines and that suggest there might be additional posttranscriptional level of control. Increases in ratio of some intracellular free amino acids in salt stressed to unstressed conditions were observed in cells grown with ectoines. Our results suggest the possibility of a supplementary role of ectoines to improve structure and function of the cells in stressful environments as well as their important role as osmoprotectants.
Neurotrophins (NTs) are a family of secreted growth factor proteins primarily involved in the regulation of survival and appropriate development of neural cells, functioning by binding to their specific (TrkA, TtkB, and TrkC) and/or common NGFR receptor. NGFR is the common receptor of NTs, binding with low-affinity to all members of the family. Among different functions assigned to NGFR, it is also involved in apoptosis induction and tumorigenesis processes. Interestingly, some of the functions of NGFR appear to be ligand-independent, suggesting a probable involvement of non-coding RNA residing within the sequence of the gene. Here, we are reporting the existence of a conserved putative microRNA, named Hsa-mir-6165 [EBI accession#: FR873488]. Transfection of a DNA segment corresponding to the pre-mir-6165 sequence in Hela cell line caused the generation of mature exogenous mir-6165 (a ∼200,000 fold overexpression). Furthermore, using specific primers, we succeeded to detect the endogenous expression of mir-6165 in several glioma cell lines and glioma primary tumors known to express NGFR. Similar to the pro-apoptotic role of NGFR in some cell types, overexpression of pre-mir-6165 in U87 cell line resulted in an elevated rate of apoptosis. Moreover, coordinated with the increased level of mir-6165 in the transfected U87 cell line, two of its predicted target genes (Pkd1 and DAGLA) were significantly down-regulated. The latter findings suggest that some of the previously attributed functions of NGFR could be explained indirectly by co-transcription of mir-6165 in the cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.