The purpose of this study is to investigate experimentally the convective heat transfer of Fe 3 O 4 -Cu/water hybrid nanofluid flow and to obtain the optimum mixing ratio of the hybrid nanofluid in a straight pipe under the influence of a constant magnetic field, applied perpendicularly to the flow direction. An experimental test rig has been designed and built for this purpose followed by rigorous tests that were performed on it for various parameters such as flow rate (corresponding 994 < Re < 2337) and nanoparticle volume concentration (0 < φ < 0.02). The experimental data are consistent with the existing literature.Increasing flow rate has led to an increased Nu number. Furthermore, the addition of both Fe 3 O 4 and Cu nanoparticles into the distilled water increases the convective heat transfer inside the pipe. A significant finding of the study is that the constant magnetic field enables up to 14% convective heat transfer enhancement as opposed to the absence of a magnetic field. Furthermore, 1.0 vol.% Fe 3 O 4 -1.0 vol.% Cu/Water hybrid nanofluid performs the best under the effect of the constant magnetic field. Accordingly, the constant magnetic field applied externally to the flow is a key factor to enhance the convective heat transfer.
A thermoeconomic analysis of a water to water heat pump are performed under different condenser and evaporator conditions. Experiments are realized for different volumetric inlet temperatures of 14.4, 17 and 19 C and different volumetric flow rates of 50, 100, 150 lt/h for condenser cooling water. Same inlet temperatures with condenser cooling water are used for evaporator water inlet, while constant volumetric flow rate of 100 lt/h is used for each case. Modified Productive Structure Analysis (MOPSA) is used for thermoeconomic analysis. It is found that increases in inlet temperature and in volumetric flow rate cause to decrease in both the unit cost of heat delivered ( H C
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.