Both all-trans retinoic acid (ATRA) and arsenic trioxide (As2O3) have proven to be very effective in obtaining high clinical complete remission (CR) rates in acute promyelocytic leukemia (APL), but they had not been used jointly in an integrated treatment protocol for remission induction or maintenance among newly diagnosed APL patients. In this study, 61 newly diagnosed APL subjects were randomized into three treatment groups, namely by ATRA, As 2O3, and the combination of the two drugs. CR was determined by hematological analysis, tumor burden was examined with real-time quantitative RT-PCR of the PML-RAR␣ (promyelocytic leukemia-retinoic acid receptor ␣) fusion transcripts, and side effects were evaluated by means of clinical examinations. Mechanisms possibly involved were also investigated with cellular and molecular biology methods. Although CR rates in three groups were all high (>90%), the time to achieve CR differed significantly, with that of the combination group being the shortest one. Earlier recovery of platelet count was also found in this group. The disease burden as reflected by fold change of PML-RAR␣ transcripts at CR decreased more significantly in combined therapy as compared with ATRA or As2O3 mono-therapy (P < 0.01). This difference persisted after consolidation (P < 0.05). Importantly, all 20 cases in the combination group remained in CR whereas 7 of 37 cases treated with mono-therapy relapsed (P < 0.05) after a follow-up of 8 -30 months (median: 18 months). Synergism of ATRA and As2O3 on apoptosis and degradation of PML-RAR␣ oncoprotein might provide a plausible explanation for superior efficacy of combinative therapy in clinic. In conclusion, the ATRA͞As2O3 combination for remission͞ maintenance therapy of APL brings much better results than either of the two drugs used alone in terms of the quality of CR and the status of the disease-free survival.A cute promyelocytic leukemia (APL) accounts for 10-15% of acute myeloid leukemia in which the maturation of granulocytic cells was blocked at the promyelocytic stage. It is also characterized by the t(15;17)(q22;q21) chromosome translocation generating the PML-RAR␣ (promyelocytic leukemia-retinoic acid receptor ␣) fusion gene, of which the leukemogenic role has been demonstrated by the transgenic mouse models (1). Although conventional chemotherapy such as anthracyclines and cytosine arabinoside (ara-C) succeeded in two-thirds of APL patients in obtaining complete remission, high frequency of early death mainly due to exacerbation of bleeding syndrome and low 5-year diseasefree survival (DFS) rates dwarf them to new drugs (2). Our group in the Shanghai Institute of Hematology (SIH) has long been interested in differentiation therapy of human cancers, as inspired by the Chinese philosophy that it is better to transform a bad element instead of simply getting rid of it. After the discovery in the 1970s to early 1980s showing that some leukemic cells could undergo phenotypic reversion under differentiation inducers (3, 4), we started to screen a...
Acquisition of additional genetic and/or epigenetic abnormalities other than the BCR/ABL fusion gene is believed to cause disease progression in chronic myeloid leukemia (CML) from chronic phase to blast crisis (BC). To gain insights into the underlying mechanisms of progression to BC, we screened DNA samples from CML patients during blast transformation for mutations in a number of transcription factor genes that are critical for myeloid-lymphoid development. In 85 cases of CML blast transformation, we identified two new mutations in the coding region of GATA-2, a negative regulator of hematopoietic stem/progenitor cell differentiation. A L359V substitution within zinc finger domain (ZF) 2 of GATA-2 was found in eight cases with myelomonoblastic features, whereas an in-frame deletion of 6 aa (⌬341-346) spanning the C-terminal border of ZF1 was detected in one patient at myeloid BC with eosinophilia. Further studies indicated that L359V not only increased transactivation activity of GATA-2 but also enhanced its inhibitory effects on the activity of PU.1, a major regulator of myelopoiesis. Consistent with the myelomonoblastic features of CML transformation with the GATA-2 L359V mutant, transduction of the GATA-2 L359V mutant into HL-60 cells or BCR/ABL-harboring murine cells disturbed myelomonocytic differentiation/proliferation in vitro and in vivo, respectively. These data strongly suggest that GATA-2 mutations may play a role in acute myeloid transformation in a subset of CML patients.blast crisis ͉ chronic phase ͉ genetic alteration ͉ transcriptional regulation
Telomeres are nucleoprotein structures that cap the ends of chromosomes, protecting them from exonucleases and distinguishing them from double-stranded breaks. Their integrity is maintained by telomerase, an enzyme consisting of a reverse transcriptase, TERT and an RNA template, TERC, and other components, including the pseudouridine synthase, dyskerin, the product of the DKC1 gene. When telomeres become critically short, a p53-dependent pathway causing cell cycle arrest is induced that can lead to senescence, apoptosis, or, rarely to genomic instability and transformation. The same pathway is induced in response to DNA damage. DKC1 mutations in the disease dyskeratosis congenita are thought to act via this mechanism, causing growth defects in proliferative tissues through telomere shortening. Here, we show that pathogenic mutations in mouse Dkc1 cause a growth disadvantage and an enhanced DNA damage response in the context of telomeres of normal length. We show by genetic experiments that the growth disadvantage, detected by disparities in X-inactivation patterns in female heterozygotes, depends on telomerase. Hemizygous male mutant cells showed a strikingly enhanced DNA damage response via the ATM/p53 pathway after treatment with etoposide with a significant number of DNA damage foci colocalizing with telomeres in cytological preparations. We conclude that dyskerin mutations cause slow growth independently of telomere shortening and that this slow growth is the result of the induction of DNA damage. Thus, dyskerin interacts with telomerase and affects telomere maintenance independently of telomere length. dyskeratosis congenita ͉ heterozygous ͉ mosaic analysis ͉ telomerase ͉ ␣p53
Both TPTPS and SD4 are due to duplications involving ZRS, the limb specific SHH enhancer. Point mutations in the ZRS and duplications encompassing the ZRS cause distinctive limb phenotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.