Cordyceps militaris is a well-known edible medicinal mushroom in East Asia that contains abundant and diverse bioactive compounds. Since traditional genome editing systems in C. militaris were inefficient and complicated, here, we show that the codon-optimized cas9, which was used with the newly reported promoter Pcmlsm3 and terminator Tcmura3, was expressed. Furthermore, with the help of the negative selection marker ura3, a CRISPR-Cas9 system that included the Cas9 DNA endonuclease, RNA presynthesized in vitro and a single-strand DNA template efficiently generated site-specific deletion and insertion. This is the first report of a CRISPR-Cas9 system in C. militaris, and it could accelerate the genome reconstruction of C. militaris to meet the need for rapid development in the fungi industry.
Cordycepin, isolated from the traditional medicinal fungus Cordyceps militaris, has gained much attention due to its various clinical functions. Previous reports of L-alanine addition could significantly improve cordycepin production, but the molecular mechanism remains unknown. In this study, transcriptome analysis of C. militaris with doubled cordycepin production induced by L-alanine addition provides an insight into the flexibility of the cordycepin network. The biopathways of energy generation and amino acid conversion were activated so that cordycepin substrate generation was consequently improved. Specific genes of rate-limiting enzymes in these pathways, as well as related transcription factors, were figured out. Two key Zn2Cys6-type transcription factors CmTf1 and CmTf2 were verified to play the roles of doubling the cordycepin production by overexpression of their coding genes in C. militaris wild type. These results provide a complete map of the cordycepin network in C. militaris with a distinct understanding of the flexibility of joints, giving a better foundation for increasing cordycepin yield and strain breeding in the future.
Cordyceps militaris fruiting bodies contain a variety of bioactive components that are beneficial to the human body. However, the low yield of fruiting bodies and the low carotenoid content in C. militaris have seriously hindered the development of the C. militaris industry. To elucidate the developmental mechanism of the fruiting bodies of C. militaris and the biosynthesis mechanism of carotenoids, the function of the flavohemoprotein-like Cmfhp gene of C. militaris was identified for the first time. The Cmfhp gene was knocked out by the split-marker method, and the targeted gene deletion mutant ΔCmfhp was obtained. An increased nitric oxide (NO) content, no fruiting body production, decreased carotenoid content, and reduced conidial production were found in the mutant ΔCmfhp. These characteristics were restored when the Cmfhp gene expression cassette was complemented into the ΔCmfhp strain by the Agrobacterium tumefaciens-mediated transformation method. Nonetheless, the Cmfhp gene had no significant effect on the mycelial growth rate of C. militaris. These results indicated that the Cmfhp gene regulated the biosynthesis of NO and carotenoids, the development of fruiting bodies, and the formation of conidia. These findings potentially pave the way to reveal the developmental mechanism of fruiting bodies and the biosynthesis mechanism of carotenoids in C. militaris.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.