Most hepatitis B virus (HBV) vaccines consist of viral small surface (S) protein subtype adw2 expressed in yeast cells. In spite of good efficacy, HBV-genotype and subtype differences, escape mutants and insufficient Th1 activation remain potential problems. To address these problems, we generated recombinant Semliki Forest virus (rSFV) vectors encoding S protein, subtype adw2 or ayw2, or a fragment of the large surface protein, amino acids 1-48 of the pre-S1 domain, fused to S (pre-S1.1-48/S). The antigen loop in S protein and the selected pre-S1 sequences are known targets of neutralizing antibodies. BALB/c mice were immunized intravenously with 10(7) rSFV particles and 10(8) rSFV particles 3 weeks later. Antibodies induced by rSFV encoding S proteins reacted preferentially with subtype determinants of yeast-derived S antigen but equally well with patient-derived S antigen. Immunization with rSFV encoding pre-S1.1-48/S resulted in formation of pre-S1- and S-specific immunoglobulin G (IgG), while immunization with the isogenic mutant without S start codon induced pre-S1 antibodies only. Neutralizing antibodies were determined by mixing with plasma-derived HBV/ayw2 and subsequent inoculation of susceptible primary hepatocyte cultures from Tupaia belangeri. S/adw2 antisera neutralized HBV/ayw2 as effectively as antisera raised with S/ayw2. The pre-S1 antibodies also completely neutralized HBV infectivity. The IgG1/IgG2a ratios ranged from 0.28 to 0.88 in the four immunized groups and were lowest for the pre-S1.1-48/S vector, indicating the strongest Th1 response. This vector type may induce subtype-independent and S-escape-resistant neutralizing antibodies against HBV.
BackgroundSubviral particles of hepatitis B virus (HBV) composed of L protein deletion variants with the 48 N-terminal amino acids of preS joined to the N-terminus of S protein (1-48preS/S) induced broadly neutralizing antibodies after immunization of mice with a Semliki Forest virus vector. A practical limitation for use as vaccine is the suboptimal secretion of such particles. The role of the N-terminal preS myristoylation in the cellular retention of full-length L protein is described controversially in the literature and the relation of these data to the truncated L protein was unknown. Thus, we studied the effect of preS myristoylation signal suppression on 1-48preS/S secretion efficiency, glycosylation and subcellular distribution.FindingsThe findings are that 1-48preS/S is secreted, and that removal of the N-terminal myristoylation signal in its G2A variant reduced secretion slightly, but significantly. The glycosylation pattern of 1-48preS/S was not affected by the removal of the myristoylation signal (G2A mutant) but was different than natural L protein, whereby N4 of the preS and N3 of the S domain were ectopically glycosylated. This suggested cotranslational translocation of 1-48preS in contrast to natural L protein. The 1-48preS/S bearing a myristoylation signal was localized in a compact, perinuclear pattern with strong colocalization of preS and S epitopes, while the non-myristoylated mutants demonstrated a dispersed, granular cytoplasmic distribution with weaker colocalization.ConclusionsThe large deletion in 1-48preS/S in presence of the myristoylation site facilitated formation and secretion of protein particles with neutralizing preS1 epitopes at their surface and could be a useful feature for future hepatitis B vaccines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.