In real-world, our DNA is unique but many people share names.is phenomenon o en causes erroneous aggregation of documents of multiple persons who are namesake of one another. Such mistakes deteriorate the performance of document retrieval, web search, and more seriously, cause improper a ribution of credit or blame in digital forensic. To resolve this issue, the name disambiguation task is designed which aims to partition the documents associated with a name reference such that each partition contains documents pertaining to a unique real-life person. Existing solutions to this task substantially rely on feature engineering, such as biographical feature extraction, or construction of auxiliary features from Wikipedia. However, for many scenarios, such features may be costly to obtain or unavailable due to the risk of privacy violation. In this work, we propose a novel name disambiguation method. Our proposed method is non-intrusive of privacy because instead of using a ributes pertaining to a real-life person, our method leverages only relational data in the form of anonymized graphs. In the methodological aspect, the proposed method uses a novel representation learning model to embed each document in a low dimensional vector space where name disambiguation can be solved by a hierarchical agglomerative clustering algorithm. Our experimental results demonstrate that the proposed method is significantly be er than the existing name disambiguation methods working in a similar se ing.
Abstract-The entity disambiguation task partitions the records belonging to multiple persons with the objective that each decomposed partition is composed of records of a unique person. Existing solutions to this task use either biographical attributes, or auxiliary features that are collected from external sources, such as Wikipedia. However, for many scenarios, such auxiliary features are not available, or they are costly to obtain. Besides, the attempt of collecting biographical or external data sustains the risk of privacy violation. In this work, we propose a method for solving entity disambiguation task from link information obtained from a collaboration network. Our method is nonintrusive of privacy as it uses only the timestamped graph topology of an anonymized network. Experimental results on two reallife academic collaboration networks show that the proposed method has satisfactory performance.
In a social community, multiple persons may share the same name, phone number or some other identifying attributes. This, along with other phenomena, such as name abbreviation, name misspelling, and human error leads to erroneous aggregation of records of multiple persons under a single reference. Such mistakes affect the performance of document retrieval, web search, database integration, and more importantly, improper attribution of credit (or blame). The task of entity disambiguation partitions the records belonging to multiple persons with the objective that each decomposed partition is composed of records of a unique person. Existing solutions to this task use either biographical attributes, or auxiliary features that are collected from external sources, such as Wikipedia. However, for many scenarios, such auxiliary features are not available, or they are costly to obtain. Besides, the attempt of collecting biographical or external data sustains the risk of privacy violation. In this work, we propose a method for solving entity disambiguation task from link information obtained from a collaboration network. Our method is non-intrusive of privacy as it uses only the time-stamped graph topology of an anonymized network. Experimental results on two real-life academic collaboration networks show that the proposed method has satisfactory performance.
Job recommendation is an important task for the modern recruitment industry. An excellent job recommender system not only enables to recommend a higher paying job which is maximally aligned with the skill-set of the current job, but also suggests to acquire few additional skills which are required to assume the new position. In this work, we created three types of information networks from the historical job data: (i) job transition network, (ii) job-skill network, and (iii) skill co-occurrence network. We provide a representation learning model which can utilize the information from all three networks to jointly learn the representation of the jobs and skills in the shared k-dimensional latent space. In our experiments, we show that by jointly learning the representation for the jobs and skills, our model provides better recommendation for both jobs and skills. Additionally, we also show some case studies which validate our claims.
The ability to construct domain specific knowledge graphs (KG) and perform question-answering or hypothesis generation is a transformative capability. Despite their value, automated construction of knowledge graphs remains an expensive technical challenge that is beyond the reach for most enterprises and academic institutions. We propose an end-to-end framework for developing custom knowledge graph driven analytics for arbitrary application domains. The uniqueness of our system lies A) in its combination of curated KGs along with knowledge extracted from unstructured text, B) support for advanced trending and explanatory questions on a dynamic KG, and C) the ability to answer queries where the answer is embedded across multiple data sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.