The unmanned aerial vehicle (UAV) route planning problem mainly centralizes on the process of calculating the best route between the departure point and target point as well as avoiding obstructions on route to avoid collisions within a given flight area. A highly efficient route planning approach is required for this complex high dimensional optimization problem. However, many algorithms are infeasible or have low efficiency, particularly in the complex three-dimensional (3d) flight environment. In this paper, a modified sparrow search algorithm named CASSA has been presented to deal with this problem. Firstly, the 3d task space model and the UAV route planning cost functions are established, and the problem of route planning is transformed into a multi-dimensional function optimization problem. Secondly, the chaotic strategy is introduced to enhance the diversity of the population of the algorithm, and an adaptive inertia weight is used to balance the convergence rate and exploration capabilities of the algorithm. Finally, the Cauchy–Gaussian mutation strategy is adopted to enhance the capability of the algorithm to get rid of stagnation. The results of simulation demonstrate that the routes generated by CASSA are preferable to the sparrow search algorithm (SSA), particle swarm optimization (PSO), artificial bee colony (ABC), and whale optimization algorithm (WOA) under the identical environment, which means that CASSA is more efficient for solving UAV route planning problem when taking all kinds of constraints into consideration.
With the development of wireless rechargeable sensor networks (WRSNs ), security issues of WRSNs have attracted more attention from scholars around the world. In this paper, a novel epidemic model, SILS(Susceptible, Infected, Low-energy, Susceptible), considering the removal, charging and reinfection process of WRSNs is proposed. Subsequently, the local and global stabilities of disease-free and epidemic equilibrium points are analyzed and simulated after obtaining the basic reproductive number R0. Detailedly, the simulations further reveal the unique characteristics of SILS when it tends to being stable, and the relationship between the charging rate and R0. Furthermore, the attack-defense game between malware and WRSNs is constructed and the optimal strategies of both players are obtained. Consequently, in the case of R0<1 and R0>1, the validity of the optimal strategies is verified by comparing with the non-optimal control group in the evolution of sensor nodes and accumulated cost.
Energy constraint hinders the popularization and development of wireless sensor networks (WSNs). As an emerging technology equipped with rechargeable batteries, wireless rechargeable sensor networks (WRSNs) are being widely accepted and recognized. In this paper, we research the security issues in WRSNs which need to be addressed urgently. After considering the charging process, the activating anti-malware program process, and the launching malicious attack process in the modeling, the susceptible–infected–anti-malware–low-energy–susceptible (SIALS) model is proposed. Through the method of epidemic dynamics, this paper analyzes the local and global stabilities of the SIALS model. Besides, this paper introduces a five-tuple attack–defense game model to further study the dynamic relationship between malware and WRSNs. By introducing a cost function and constructing a Hamiltonian function, the optimal strategies for malware and WRSNs are obtained based on the Pontryagin Maximum Principle. Furthermore, the simulation results show the validation of the proposed theories and reveal the influence of parameters on the infection. In detail, the Forward–Backward Sweep method is applied to solve the issues of convergence of co-state variables at terminal moment.
As energy-harvesting wireless sensor networks (EHWSNs) are increasingly integrated with all walks of life, their security problems have gradually become hot issues. As an attack means, malicious programs often attack sensor nodes in critical locations in the networks to cause paralysis and information leakage of the networks, resulting in security risks. Based on the previous works and the introduction of solar charging, we proposed a novel model, namely, Susceptible-Infected-Low (energy)-Recovered-Dead (SILRD) with solar energy harvesters. Meanwhile, this paper takes Logistic Growth as the drop rate of sensor nodes and the infection rate of multitype malicious programs under nonlinear condition into consideration. Finally, an Λ-Susceptible-Infected-Low (energy)-Recovered-Dead (ΛSILRD) model is proposed. Based on the Pontryagin Maximum Principle, this paper proposes the optimal strategies based on the SILRD with solar energy harvesters and the ΛSILRD. The effectiveness of SILRD with solar energy harvesters was demonstrated by comparison with the general epidemic model. At the same time, by analyzing different charging strategies, we conclude that solar charging is highly efficient. Moreover, we further analyze the influence of controllable and uncontrollable input and various node degrees on ΛSILRD model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.