The prevalence of networked sensors and actuators in many real-world systems such as smart buildings, factories, power plants, and data centres generate substantial amounts of multivariate time series data for these systems. Many of these cyber-physical systems (CPSs) are engineered for mission-critical tasks and are thus targets for cyber-attacks. The rich sensor data can be continuously monitored for intrusion events through anomaly detection. However, conventional threshold-based anomaly detection methods are inadequate due to the dynamic complexities of these systems, while supervised machine learning methods are unable to exploit the large amounts of data due to the lack of labeled data. On the other hand, current unsupervised machine learning approaches have not fully exploited the spatial-temporal correlation and other dependencies amongst the multiple variables (sensors/actuators) in the system for detecting anomalies. Most of the current techniques also employed simple comparison between the present states and predicted normal ranges for anomaly detection, which can be inadequate given the highly dynamic behaviors of the systems. In this work, we propose an unsupervised multivariate anomaly detection method based on Generative Adversarial Networks (GANs), using the Long-Short-Term-Memory Recurrent Neural Networks (LSTM-RNN) as the base models (namely, the generator and discriminator) in the GAN framework to capture the temporal correlation of time series distributions. Instead of treating each data stream independently, our proposed Multivariate Anomaly Detection with GAN (MAD-GAN) framework considers the entire variable set concurrently to capture the latent interactions amongst the variables. We also fully exploit both the generator and discriminator produced by the GAN, using a novel anomaly score called DR-score to detect anomalies by discrimination and reconstruction. We have tested our proposed MAD-GAN using two recent datasets collected from real world CPS: the Secure Water Treatment (SWaT) and the Water Distribution (WADI) datasets. Our experimental results showed that the proposed MAD-GAN is effective in reporting anomalies caused by various cyberintrusions compared in these complex real-world systems.
Early detection of incipient faults is of vital importance to reducing maintenance costs, saving energy, and enhancing occupant comfort in buildings. Popular supervised learning models such as deep neural networks are considered promising due to their ability to directly learn from labeled fault data; however, it is known that the performance of supervised learning approaches highly relies on the availability and quality of labeled training data. In Fault Detection and Diagnosis (FDD) applications, the lack of labeled incipient fault data has posed a major challenge to applying these supervised learning techniques to commercial buildings. To overcome this challenge, this paper proposes using Monte Carlo dropout (MC-dropout) to enhance the supervised learning pipeline, so that the resulting neural network is able to detect and diagnose unseen incipient fault examples. We also examine the proposed MC-dropout method on the RP-1043 dataset to demonstrate its effectiveness in indicating the most likely incipient fault types.
This paper presents a platform-based design flow for smart buildings. The proposed flow maps high-level specifications of desired building applications to their physical implementations through three intermediate design platforms, namely the virtual device platform, the module platform, and the implementation platform.
We present a novel unsupervised deep learning approach that utilizes the encoder-decoder architecture for detecting anomalies in sequential sensor data collected during industrial manufacturing. Our approach is designed not only to detect whether there exists an anomaly at a given time step, but also to predict what will happen next in the (sequential) process. We demonstrate our approach on a dataset collected from a real-world Additive Manufacturing (AM) testbed. The dataset contains infrared (IR) images collected under both normal conditions and synthetic anomalies. We show that the encoder-decoder model is able to identify the injected anomalies in a modern AM manufacturing process in an unsupervised fashion. In addition, it also gives hints about the temperature non-uniformity of the testbed during manufacturing, which is what we are not aware of before doing the experiment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citationsācitations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright Ā© 2024 scite LLC. All rights reserved.
Made with š for researchers
Part of the Research Solutions Family.