Due to the increasing demand for eco-friendly, cost-effective and safe technologies, biosynthetic metal nanoparticles have attracted worldwide attention. In this study, silver nanoparticles (AgNPs) were extracellularly biosynthesized using the culture supernatants of Aspergillus sydowii. During synthesis, color change was preliminarily judge of the generation of AgNPs, and the UV absorption peak at 420 nm further confirms the production of AgNPs. Transmission electron microscopy and X-ray diffraction were also used to identify the AgNPs. The results shows that AgNPs has crystalline cubic feature and is a polydisperse spherical particle with size between 1 and 24 nm. Three main synthesis factors (temperature, pH and substrate concentration) were optimized, the best synthesis conditions were as follows 50 °C, 8.0 and 1.5 mM. In the biological application of AgNPs, it shows effective antifungal activity against many clinical pathogenic fungi and antiproliferative activity to HeLa cells and MCF-7 cells in vitro. Our research finds a new path to biosynthesis of AgNPs in an eco-friendly manner, and bring opportunity for biomedical applications in clinic.
The objective of this study was to find one or more fungal strains that could be utilized to biosynthesize antifungal silver nanoparticles (AgNPs). Using morphological and molecular methods,
Arthroderma fulvum
was identified as the most effective fungal strain for synthesizing AgNPs. The UV–visible range showed a single peak at 420 nm, which corresponded to the surface plasmon absorbance of AgNPs. X-ray diffraction and transmission electron microscopy demonstrated that the biosynthesized AgNPs were crystalline in nature with an average diameter of 15.5±2.5 nm. Numerous factors could potentially affect the process of biosynthesis, and the main factors are discussed here. Optimization results showed that substrate concentration of 1.5 mM, alkaline pH, reaction temperature of 55°C, and reaction time of 10 hours were the optimum conditions for AgNP biosynthesis. Biosynthesized AgNPs showed considerable activity against the tested fungal strains, including
Candida
spp.,
Aspergillus
spp., and
Fusarium
spp., especially
Candida
spp.
Amphotericin B (AmB) is an antifungal drug used for serious fungal infections and leishmaniosis. However, its clinical application is limited because of its high toxicity. To resolve this problem, herein we loaded AmB into methoxy poly(ethylene glycol)-b-poly(l-glutamic acid-co-l-phenylalanine) (mPEG-b-P(Glu-co-Phe)) nanoparticles (l-AmB) via electrostatic, hydrophobic and π-π interactions. The l-AmB has excellent stability both in PBS and in plasma and shows a remarkably reduced hemolysis (17.1 ± 1.5%, 6 h) compared to the free AmB (94.2 ± 5.3%, 6 h). The nephrotoxicity of l-AmB is significantly lower than that of free AmB. The maximum tolerance dose (MTD) of l-AmB is 3.0 mg kg-1, which is 3.75 fold that of free AmB (MTD = 0.8 mg kg-1). The antimicrobial activity of the conjugate was retained in vivo, with l-AmB proving to be a more protective treatment for Aspergillus fumigatus infections in mice than AmB alone. These indicate that l-AmB is a formulation of AmB with low side effects.
Curcumin (CM) is a natural polyphenolic compound with multiple biomedical functions. However, clinical applications face more challenges due to its low dissolution rate and poor bioavailability. Micronization is an effective strategy to overcome these drawbacks. Herein, CM nanoparticles (CM NPs, $300 nm) were fabricated using solution enhanced dispersion by supercritical CO 2 (SEDS). The solubility of CM NPs was remarkably enhanced. Aim to study the effects of micronization on the biological functions of CM, we investigated the antibacterial activity of original CM and CM NPs upon Pseudomonas aeruginosa. In vitro, the minimal inhibitory concentrations (MIC) assay, solid-medium spot assay, growth kinetics assay and morphologic observation using atomic force microscopy (AFM) confirmed that the anti-P. aeruginosa activity of CM NPs was enhanced compared to original CM. Moreover, CM NPs also showed stronger inhibition for adhesion and biofilm formation of P. aeruginosa compared to original CM. Experiments on mice infected with P. aeruginosa showed that CM NPs have a better therapeutic effect than the original CM in vivo. In summary, CM NPs may be a novel and promising therapeutic candidate for bacterial infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.