The sea surface temperature (SST) is an important parameter of the energy balance on the Earth’s surface. SST prediction is crucial to marine production, marine protection, and climate prediction. However, the current SST prediction model still has low precision and poor stability. In this study, a medium and long-term SST prediction model is designed on the basis of the gated recurrent unit (GRU) neural network algorithm. This model captures the SST time regularity by using the GRU layer and outputs the predicted results through the fully connected layer. The Bohai Sea, which is characterized by a large annual temperature difference, is selected as the study area, and the SSTs on different time scales (monthly and quarterly) are used to verify the practicability and stability of the model. The results show that the designed SST prediction model can efficiently fit the results of the real sea surface temperature, and the correlation coefficient is above 0.98. Regardless of whether monthly or quarterly data are used, the proposed network model performs better than long short-term memory in terms of stability and accuracy when the length of the prediction increases. The root mean square error and mean absolute error of the predicted SST are mostly within 0–2.5 °C.
Monitoring of offshore aquaculture zones is important to marine ecological environment protection and maritime safety and security. Remote sensing technology has the advantages of large-area simultaneous observation and strong timeliness, which provide normalized monitoring of marine aquaculture zones. Aiming at the problems of weak generalization ability and low recognition rate in weak signal environments of traditional target recognition algorithm, this paper proposes a method for automatic extraction of offshore fish cage and floating raft aquaculture zones based on semantic segmentation. This method uses Generative Adversarial Networks to expand the data to compensate for the lack of training samples, and uses ratio of green band to red band (G/R) instead of red band to enhance the characteristics of aquaculture spectral information, combined with atrous convolution and atrous space pyramid pooling to enhance the context semantic information, to extract and identify two types of offshore fish cage zones and floating raft aquaculture zones. The experiment is carried out in the eastern coastal waters of Shandong Province, China, and the overall identification accuracy of the two types of aquaculture zones can reach 94.8%. The results show that the method proposed in this paper can realize high-precision extraction both of offshore fish cage and floating raft aquaculture zones.
Timely monitoring of marine aquaculture has considerable significance for marine ecological protection and maritime safety and security. Considering that supervised learning needs to rely on a large number of training samples and the characteristics of intensive and regular distribution of the laver aquaculture zone, in this paper, an inaccurate supervised classification model based on fully convolutional neural network and conditional random filed (FCN-CRF) is designed for the study of a laver aquaculture zone in Lianyungang, Jiangsu Province. The proposed model can extract the aquaculture zone and calculate the area and quantity of laver aquaculture net simultaneously. The FCN is used to extract the laver aquaculture zone by roughly making the training label. Then, the CRF is used to extract the isolated laver aquaculture net with high precision. The results show that the k a p p a coefficient of the proposed model is 0.984, the F 1 is 0.99, and the recognition effect is outstanding. For label production, the fault tolerance rate is high and does not affect the final classification accuracy, thereby saving more label production time. The findings provide a data basis for future aquaculture yield estimation and offshore resource planning as well as technical support for marine ecological supervision and marine traffic management.
Mariculture is crucial in environmental monitoring and safety assurance of marine environments. Certain mariculture areas are often partially or completely submerged in water, which causes the target signal to be extremely weak and difficult to detect. A method of target recognition and classification based on the convolutional neural network called semantic segmentation can fully consider the space spectrum and context semantic information. Therefore, this study proposes a target extraction method on the basis of multisource feature fusion, such as nNDWI and G/R ratio. In this work, the proposed recognition algorithm is verified under the conditions of uniform distribution of strong, weak, and extremely weak signals. Results show that the G/R feature is superior under the condition of uniform distribution of strong and weak signals. Its mean pixels accuracy is 2.32% higher than RGB (combination of red band, green band, and blue band), and its overall classification accuracy is 98.84%. Under the condition of extremely weak signal, the MPA of the multisource feature method based on the combination of G/R and nNDWI is 10.76% higher than RGB, and the overall classification accuracy is 82.02%. Under this condition, the G/R features highlight the target, and nNDWI suppresses noise. The proposed method can effectively extract the information of weak signal in the marine culture area and provide technical support for marine environmental monitoring and marine safety assurance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.