Cell and tissue functions rely on an elaborate intracellular transport system responsible for distributing bioactive molecules with high spatiotemporal accuracy. The tubular network of the Endoplasmic Reticulum (ER) constitutes a system for the delivery of luminal solutes it stores, including Ca2+, across the cell periphery. The physical nature and factors underlying the ER's functioning as a fluidics system are unclear. Using an improved ER transport visualisation methodology combined with optogenetic Ca2+ dynamics imaging, we observed that ER luminal transport is modulated by natural ER tubule narrowing and dilation, directly proportional to the amount of an ER membrane morphogen, Reticulon 4 (RTN4). Consequently, the ER morphoregulatory effect of RTN4 defines ER's capacity for peripheral Ca2+ delivery and thus controls axonogenesis. Excess RTN4 limited ER luminal transport, Ca2+ release and iPSC-derived cortical neurons' axonal extension, while RTN4 elimination reversed the effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.