Dysregulation of certain microRNAs (miRNAs) in cancer can promote tumorigenesis, metastasis and invasion. However, the functions and targets of only a few mammalian miRNAs are known. In particular, the miRNAs that participates in radiation induced carcinogenesis and the miRNAs that target the tumor suppressor gene Big-h3 remain undefined. Here in this study, using a radiation induced thymic lymphoma model in BALB/c mice, we found that the tumor suppressor gene Big-h3 is down-regulated and miR-21 is up-regulated in radiation induced thymic lymphoma tissue samples. We also found inverse correlations between Big-h3 protein and miR-21 expression level among different tissue samples. Furthermore, our data indicated that miR-21 could directly target Big-h3 in a 3′UTR dependent manner. Finally, we found that miR-21 could be induced by TGFβ, and miR-21 has both positive and negative effects in regulating TGFβ signaling. We conclude that miR-21 participates in radiation induced carcinogenesis and it regulates TGFβ signaling.
Radiation‐induced lung injury (RILI) is one of the most common and fatal complications of thoracic radiotherapy. It is characterized with two main features including early radiation pneumonitis and fibrosis in later phase. This study was to investigate the potential radioprotective effects of polydatin (PD), which was shown to exert anti‐inflammation and anti‐oxidative capacities in other diseases. In this study, we demonstrated that PD‐mitigated acute inflammation and late fibrosis caused by irradiation. PD treatment inhibited TGF‐β1‐Smad3 signalling pathway and epithelial–mesenchymal transition. Moreover, radiation‐induced imbalance of Th1/Th2 was also alleviated by PD treatment. Besides its free radical scavenging capacity, PD induced a huge increase of Sirt3 in culture cells and lung tissues. The level of Nrf2 and PGC1α in lung tissues was also elevated. In conclusion, our data showed that PD attenuated radiation‐induced lung injury through inhibiting epithelial–mesenchymal transition and increased the expression of Sirt3, suggesting PD as a novel potential radioprotector for RILI.
Radiotherapy is an effective treatment method for lung cancer, particularly when the disease is at an advanced stage. However, previous researchers have observed that the majority of patients with conventional radiation therapy develop distant metastases and succumb to the disease. Thus, identifying and understanding novel pathways for the development of new therapeutic targets is a major goal in research on pulmonary neoplasms. Recent studies suggest that epithelial-mesenchymal transition (EMT) is the most important contributor to cancer metastasis. Induction of this complex process requires endogenously produced microRNAs; specifically, downregulation of the miRNA-200c causes an induction of EMT. We recently identified the tank-binding kinase-1 (TBK1) as a downstream effector of the miR-200c-driven pathway, but the biological function of TBK1 in EMT remains unknown. In this study, we tested whether TBK1 has a role in radiation-induced EMT and identified associated potential mechanisms. Human alveolar type II epithelial carcinoma A549 cells were irradiated with 60 Co g-rays. Western blotting revealed a time-and dose-dependent decrease in E-cadherin with a concomitant increase in vimentin after radiation, suggesting that the epithelial cells acquired a mesenchymal-like morphology. TBK1 siRNA significantly inhibited radiationinduced suppression of the epithelial marker E-cadherin and upregulation of the mesenchymal marker vimentin. The invasion and migratory potential of lung cancer cells upon radiation treatment was also reduced by TBK1 knockdown. Furthermore, radiation-induced EMT attenuated by TBK1 depletion was partially dependent on transcriptional factor ZEB1 expression. Finally, we found glycogen synthase kinase-3b (GSK-3b) is involved in regulation of radiation-induced EMT by TBK1. Thus, our findings reveal that TBK1 signaling regulates radiation-induced EMT by controlling GSK-3b phosphorylation and ZEB1 expression. TBK1 may therefore constitute a useful target for treatment of radiotherapy-induced metastasis diseases.
MiR-34a, a direct target of p53, has shown to exert potent anti-proliferative effects. It has also been found that miR-34a can be induced by irradiation in vitro and in vivo. However, the relationship between miR-34a and radio-sensitivity, and its potential diagnostic significance in radiation biology, remain unclear. This study found that differing responses to ionizing radiation (IR) of young and adult mice were related to miR-34a. First, we found that miR-34a could be induced in many organs by radiation of both young and adult mice. However, the level of miR-34a induced by young mice was much higher when compared to adult mice. Next, we found that miR-34a played a critical role in radio-sensitivity variations of different tissues by enhancing cell apoptosis and decreasing cell viability. We also found that the induction of miR-34a by radiation was in a p53 dependent manner and that one possible downstream target of miR-34a that lead to different radio-sensitivity was the anti-apoptosis molecular Bcl-2. However, over-expression of miR-34a and knockdown of Bcl-2 could significantly enhance the radio-sensitivity of different cells while inhibition of miR-34a could protect cells from radiation injury. Finally, we concluded that miR-34a could be stable in serum after IR and serve as a novel indicator of radiation injury. Taken together, this data strongly suggests that miR-34a may be a novel indicator, mediator and target of radiation injury, radio-sensitivity and radioprotection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.