OLTP systems can often improve throughput by batching transactions and processing them as a group. Batching has been used for optimizations such as message packing and group commits; however, there is little research on the benefits of a holistic approach to batching across a transaction's entire life cycle. In this paper, we present a framework to incorporate batching at multiple stages of transaction execution for OLTP systems based on optimistic concurrency control. Storage batching enables reordering of transaction reads and writes at the storage layer, reducing conflicts on the same object. Validator batching enables reordering of transactions before validation, reducing conflicts between transactions. Dependencies between transactions make transaction reordering a non-trivial problem, and we propose several efficient and practical algorithms that can be customized to various transaction precedence policies such as reducing tail latency. We also show how to reorder transactions with a thread-aware policy in multi-threaded OLTP architecture without a centralized validator. In-depth experiments on a research prototype, an opensource OLTP system, and a production OLTP system show that our techniques increase transaction throughput by up to 2.2x and reduce their tail latency by up to 71% compared with the start-of-the-art systems on workloads with high data contention.
No abstract
Recent research has shown promising results by using machine learning (ML) techniques to improve the performance of database systems, e.g., in query optimization or index recommendation. However, in many production deployments, the ML models' performance degrades significantly when the test data diverges from the data used to train these models. In this paper, we address this performance degradation by using B-instances to collect additional data during deployment. We propose an active data collection platform, ADCP, that employs active learning (AL) to gather relevant data cost-effectively. We develop a novel AL technique, Holistic Active Learner (HAL), that robustly combines multiple noisy signals for data gathering in the context of database applications. HAL applies to various ML tasks, budget sizes, cost types, and budgeting interfaces for database applications. We evaluate ADCP on both industry-standard benchmarks and real customer workloads. Our evaluation shows that, compared with other baselines, our technique improves ML models' prediction performance by up to 2× with the same cost budget. In particular, on production workloads, our technique reduces the prediction error of ML models by 75% using about 100 additionally collected queries.
Spatially constrained planar networks are frequently encountered in real-life systems. In this paper, based on a space-filling disk packing we propose a minimal model for spatial maximal planar networks, which is similar to but different from the model for Apollonian networks [J. S. Andrade, Jr. et al., Phys. Rev. Lett. 94, 018702 (2005)]. We present an exhaustive analysis of various properties of our model, and obtain the analytic solutions for most of the features, including degree distribution, clustering coefficient, average path length, and degree correlations. The model recovers some striking generic characteristics observed in most real networks. To address the robustness of the relevant network properties, we compare the structural features between the investigated network and the Apollonian networks. We show that topological properties of the two networks are encoded in the way of disk packing. We argue that spatial constrains of nodes are relevant to the structure of the networks.
Abstract. As one of the most significant models, the uniform recursive tree (URT) has found many applications in a variety of fields. In this paper, we study rigorously the structural features and spectral properties of the adjacency matrix for a family of deterministic uniform recursive trees (DURTs) that are deterministic versions of URT. Firstly, from the perspective of complex networks, we investigate analytically the main structural characteristics of DURTs, and obtain the accurate solutions for these properties, which include degree distribution, average path length, distribution of node betweenness, and degree correlations. Then we determine the complete eigenvalues and their corresponding eigenvectors of the adjacency matrix for DURTs. Our research may shed light in better understanding of the features for URT. Also, the analytical methods used here is capable of extending to many other deterministic networks, making the precise computation of their properties (especially the full spectrum characteristics) possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.