The causal mechanism between climate and political violence is fraught with complex mechanisms. Current quantitative causal models rely on one or more assumptions: (1) the climate drivers persistently generate conflict, (2) the causal mechanisms have a linear relationship with the conflict generation parameter, and/or (3) there is sufficient data to inform the prior distribution. Yet, we know conflict drivers often excite a social transformation process which leads to violence (e.g., drought forces agricultural producers to join urban militia), but further climate effects do not necessarily contribute to further violence. Therefore, not only is this bifurcation relationship highly non-linear, there is also often a lack of data to support prior assumptions for high resolution modeling. Here, we aim to overcome the aforementioned causal modeling challenges by proposing a neural forward-intensity Poisson process (NFIPP) model. The NFIPP is designed to capture the potential non-linear causal mechanism in climate induced political violence, whilst being robust to sparse and timing-uncertain data. Our results span 20 recent years and reveal an excitation-based causal link between extreme climate events and political violence across diverse countries. Our climate-induced conflict model results are cross-validated against qualitative climate vulnerability indices. Furthermore, we label historical events that either improve or reduce our predictability gain, demonstrating the importance of domain expertise in informing interpretation.
The causal mechanism between climate and political violence is fraught with complex mechanisms. Current quantitative causal models rely on one or more assumptions: (1) the climate drivers persistently generate conflict, (2) the causal mechanisms have a linear relationship with the conflict generation parameter, and/or (3) there is sufficient data to inform the prior distribution. Yet, we know conflict drivers often excite a social transformation process which leads to violence (e.g., drought forces agricultural producers to join urban militia), but further climate effects do not necessarily contribute to further violence. Therefore, not only is this bifurcation relationship highly non-linear, there is also often a lack of data to support prior assumptions for high resolution modeling. Here, we aim to overcome the aforementioned causal modeling challenges by proposing a neural forward-intensity Poisson process (NFIPP) model. The NFIPP is designed to capture the potential nonlinear causal mechanism in climate induced political violence, whilst being robust to sparse and timing-uncertain data. Our results span 20 recent years and reveal an excitation-based causal link between extreme climate events and political violence across diverse countries. Our climate-induced conflict model results are cross-validated against qualitative climate vulnerability indices. Furthermore, we label historical events that either improve or reduce our predictability gain, demonstrating the importance of domain expertise in informing interpretation.
In wireless networks, consumer experience is important for both short monitoring of the Quality of Experience (QoE) as well as long term customer retainment. Current 4G and 5G networks are not equipped to measure QoE in an automated way, and experience is still reported through traditional customer care and drive-testing. In recent years, large-scale social media analytics has enabled researchers to gather statistically significant data on consumer experience and correlate them to major events such as social celebrations or significant network outages. However, the translational pathway from languages to topicspecific emotions (e.g., sentiment) to detecting anomalies in QoE is challenging. This challenge lies in two issues: (1) the social experience data remains sparsely distributed across space, and (2) anomalies in experience jump across sub-topic spaces (e.g., from data rate to signal strength).Here, we solved these two challenges by examining the spectral space of experience across topics using federated learning (FL) to identify anomalies. This can inform telecom operators to pay attention to potential network demand or supply issues in real time using relatively sparse and distributed data. We use real social media data curated for our telecommunication projects across London and the United Kingdom to demonstrate our results. FL was able to achieve 74-92% QoE anomaly detection accuracy, with the benefit of 30-45% reduce data transfer and preserving privacy better than raw data transfer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.