Domain generalization (DG) aims to train a model from limited source domains, allowing it to generalize to unknown target domains. Typically, DG models only employ large-scale pre-trained models during the initialization of fine-tuning. However, large-scale pre-trained models already possess the ability to resist domain shift. If we reference pre-trained models continuously during fine-tuning to maintain this ability, it could further enhance the generalization ability of the DG model. For this purpose, we introduce a new method called Fine-Tune with Large-scale pre-trained Priors (FT-LP), which incorporates the pre-trained model as a prior into the DG fine-tuning process, ensuring that the model refers to its pre-trained model at each optimization step. FT-LP comprises a theoretical framework and a simple implementation strategy. In theory, we verify the rationality of FT-LP by introducing a generalization error bound with the pre-trained priors for DG. In implementation, we utilize an encoder to simulate the model distribution, enabling the use of FT-LP when only pre-trained weights are available. In summary, we offer a new fine-tuning method for DG algorithms to utilize pre-trained models throughout the fine-tuning process. Through experiments on various datasets and DG models, our proposed method exhibits significant improvements, indicating its effectiveness.Preprint. Under review.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.