The Chinese herbal formula TiaoGanYiPi (TGYP) showed effective against chronic hepatitis B (CHB) caused by hepatitis B virus (HBV) infection. Hence, we aimed to clarify the mechanisms and potential targets between TGYP and CHB. The active compounds and related putative targets of TGYP, and disease targets of CHB were obtained from the public databases. The key targets between TGYP and CHB were identified through the network construction and module analysis. The expression of the key targets was detected in Gene Expression Omnibus (GEO) dataset and normal hepatocyte cell line LO2. We first obtained 11 key targets which were predominantly enriched in the Cancer, Cell cycle and HBV-related pathways. And the expression of the key targets was related to HBV infection and liver inflammation verified in GSE83148 database. Furthermore, the results of real-time quantitative PCR and CCK-8 assay indicated that TGYP could regulate the expression of key targets including CCNA2, ABL1, CDK4, CDKN1A, IGFR and MAP2K1, and promote proliferation of LO2 cells. In coclusion, we identified the active compounds and key targets btween TGYP and CHB, and found that the TGYP might exhibite curative effect on CHB via promoting hepatocyte proliferation and inhibiting the liver inflammatory processes.
The Chinese herbal formula Tiao-Gan-Yi-Pi (TGYP) showed effective against Chronic Hepatitis B (CHB). In this study, we aimed to clarify the mechanisms and potential targets between TGYP and CHB through network pharmacology and molecular docking verification. The compounds of TGYP were identified in the TCMSP and CNKI databases, and their putative targets were predicted through SwissTargetPrediction and STITCH databases. The targets of CHB were obtained from the GeneCards, NCBI Gene, and DisGeNET databases. The above mentioned data were visualized using Cytoscape, and molecular docking showed the relationship between them. The expression of key targets was verified in GEO databases. Hence, we screened out 11 TGYP-related key targets for CHB included ABL1, CASP8, CCNA2, CCNB1, CDK4, CDKN1A, EP300, HIF1A, IGF1R, MAP2K1 and PGR. The key targets were predominantly enriched in the cancer, cell cycle and hepatitis B pathways and involved in the positive regulation of fibroblast proliferation, signal transduction, and negative regulation of gene expression biological processes, and expression of key target genes was related to HBV infection and liver inflammation. Through this newly constructed interaction network between TGYP and CHB, we identified active compounds and targets which could be further used for providing clinical guidance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.