Biochar, a co-product of thermochemical conversion of lignocellulosic materials into advanced biofuels, may be used as a soil amendment to enhance the sustainability of biomass harvesting. We investigated the impact of biochar amendments (0, 5, 10, and 20 g-biochar kg− 1 soil) on the quality of a Clarion soil (Mesic Typic Hapludolls), collected (0-15 cm) in Boone County, Iowa. Repacked soil columns were incubated for 500 days at 25 °C and 80% relative humidity. On week 12, 5 g of dried and ground swine manure was incorporated into the upper 3 cm of soil for half of the columns. Once each week, all columns were leached with 200 mL of 0.001 M CaCl2. Soil bulk density increased with time for all columns and was significantly lower for biochar amended soils relative to the un-amended soils. The biochar amended soils retained more water at gravity drained equilibrium (up to 15%), had greater water retention at − 1 and −5 bars soil water matric potential, (13 and 10% greater, respectively), larger specific surface areas (up to 18%), higher cation exchange capacities (up to 20%), and pH values (up to 1 pH unit) relative to the un-amended controls. No effect of biochar on saturated hydraulic conductivity was detected. The biochar amendments significantly increased total N (up to 7%), organic C (up to 69%), and Mehlich III extractable P, K, Mg and Ca but had no effect on Mehlich III extractable S, Cu, and Zn. The results indicate that biochar amendments have the potential to substantially improve the quality and fertility status of Midwestern agricultural soils. RightsWorks produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted. Biochar, a co-product of thermochemical conversion of lignocellulosic materials into advanced biofuels, may be used as a soil amendment to enhance the sustainability of biomass harvesting. We investigated the impact of biochar amendments (0, 5, 10, and 20 g-biochar kg − 1 soil) on the quality of a Clarion soil (Mesic Typic Hapludolls), collected (0-15 cm) in Boone County, Iowa. Repacked soil columns were incubated for 500 days at 25°C and 80% relative humidity. On week 12, 5 g of dried and ground swine manure was incorporated into the upper 3 cm of soil for half of the columns. Once each week, all columns were leached with 200 mL of 0.001 M CaCl 2 . Soil bulk density increased with time for all columns and was significantly lower for biochar amended soils relative to the un-amended soils. The biochar amended soils retained more water at gravity drained equilibrium (up to 15%), had greater water retention at − 1 and −5 bars soil water matric potential, (13 and 10% greater, respectively), larger specific surface areas (up to 18%), higher cation exchange capacities (up to 20%), and pH values (up to 1 pH unit) relative to the un-amended controls. No effect of biochar on saturated hydraulic conductivity was detected. The biochar amendments significantly increased total N (up to 7%), orga...
Application of biochar to highly weathered tropical soils has been shown to enhance soil quality and decrease leaching of nutrients. Little, however, is known about the effects of biochar applications on temperate region soils. Our objective was to quantify the impact of biochar on leaching of plant nutrients following application of swine manure to a typical Midwestern agricultural soil. Repacked soil columns containing 0, 5, 10, and 20 g-biochar kg− 1-soil, with and without 5 g kg− 1 of dried swine manure were leached weekly for 45 weeks. Measurements showed a significant decrease in the total amount of N, P, Mg, and Si that leached from the manure-amended columns as biochar rates increased, even though the biochar itself added substantial amounts of these nutrients to the columns. Among columns receiving manure, the 20 g kg− 1 biochar treatments reduced total N and total dissolved P leaching by 11% and 69%, respectively. By-pass flow, indicated by spikes in nutrient leaching, occurred during the first leaching event after manure application for 3 of 6 columns receiving manure with no biochar, but was not observed for any of the biochar amended columns. These laboratory results indicate that addition of biochar to a typical Midwestern agricultural soil substantially reduced nutrient leaching, and suggest that soil-biochar additions could be an effective management option for reducing nutrient leaching in production agriculture. RightsWorks produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted. Application of biochar to highly weathered tropical soils has been shown to enhance soil quality and decrease leaching of nutrients. Little, however, is known about the effects of biochar applications on temperate region soils. Our objective was to quantify the impact of biochar on leaching of plant nutrients following application of swine manure to a typical Midwestern agricultural soil. Repacked soil columns containing 0, 5, 10, and 20 g-biochar kg − 1 -soil, with and without 5 g kg − 1 of dried swine manure were leached weekly for 45 weeks. Measurements showed a significant decrease in the total amount of N, P, Mg, and Si that leached from the manure-amended columns as biochar rates increased, even though the biochar itself added substantial amounts of these nutrients to the columns. Among columns receiving manure, the 20 g kgbiochar treatments reduced total N and total dissolved P leaching by 11% and 69%, respectively. By-pass flow, indicated by spikes in nutrient leaching, occurred during the first leaching event after manure application for 3 of 6 columns receiving manure with no biochar, but was not observed for any of the biochar amended columns. These laboratory results indicate that addition of biochar to a typical Midwestern agricultural soil substantially reduced nutrient leaching, and suggest that soil-biochar additions could be an effective management option for reducing nutrient leaching in ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.