State estimation plays a vital role in the stable operation of modern power systems, but it is vulnerable to cyber attacks. False data injection attacks (FDIA), one of the most common cyber attacks, can tamper with measurement data and bypass the bad data detection (BDD) mechanism, leading to incorrect results of power system state estimation (PSSE). This paper presents a detection framework of FDIA for PSSE based on graph edge-conditioned convolutional networks (GECCN), which use topology information, node features and edge features. Through deep graph architecture, the correlation of sample data is effectively mined to establish the mapping relationship between the estimated values of measurements and the actual states of power systems. In addition, the edge-conditioned convolution operation allows processing data sets with different graph structures. Case studies are undertaken on the IEEE 14-bus system under different attack intensities and degrees to evaluate the performance of GECCN. Simulation results show that GECCN has better detection performance than convolutional neural networks, deep neural networks and support vector machine. Moreover, the satisfactory detection performance obtained with the data sets of the IEEE 14-bus, 30-bus and 118-bus systems verifies the effective scalability of GECCN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.