A two-stage procedure for simultaneously detecting multiple thresholds and achieving model selection in the segmented accelerated failure time (AFT) model is developed in this paper. In the first stage, we formulate the threshold problem as a group model selection problem so that a concave 2-norm group selection method can be applied. In the second stage, the thresholds are finalized via a refining method. We establish the strong consistency of the threshold estimates and regression coefficient estimates under some mild technical conditions. The proposed procedure performs satisfactorily in our simulation studies. Its real world applicability is demonstrated via analyzing a follicular lymphoma data.
a b s t r a c tThe existence of a limiting spectral distribution (LSD) for a large-dimensional sample covariance matrix generated by the vector autoregressive moving average (VARMA) model is established. In particular, we obtain explicit forms of the LSDs for random matrices generated by a first-order vector autoregressive (VAR(1)) model and a first-order vector moving average (VMA(1)) model, as well as random coefficients for VAR(1) and VMA(1). The parameters for these explicit forms are also estimated. Finally, simulations demonstrate that the results are effective.Crown
The existence of limiting spectral distribution (LSD) of the product of two random matrices is proved. One of the random matrices is a sample covariance matrix and the other is an arbitrary Hermitian matrix. Specially, the density function of LSD of S n W n is established, where S n is a sample covariance matrix and W n is Wigner matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.