BackgroundComparisons of quantitative trait loci (QTL) for growth and parameters of growth curves assist in understanding the genetics and ultimately the physiology of growth. Records of body weight at 3, 6, 12, 24, 48 and 72 weeks of age and growth rate between successive age intervals of about 500 F2 female chickens of the Roslin broiler-layer cross were available for analysis. These data were analysed to detect and compare QTL for body weight, growth rate and parameters of the Gompertz growth function.ResultsOver 50 QTL were identified for body weight at specific ages and most were also detected in the nearest preceding and/or subsequent growth stage. The sum of the significant and suggestive additive effects for bodyweight at specific ages accounted for 23-43% of the phenotypic variation. A single QTL for body weight on chromosome 4 at 48 weeks of age had the largest additive effect (550.4 ± 68.0 g, 11.5% of the phenotypic variation) and a QTL at a similar position accounted 14.5% of the phenotypic variation at 12 weeks of age. Age specific QTL for growth rate were detected suggesting that there are specific genes that affect developmental processes during the different stages of growth. Relatively few QTL influencing Gompertz growth curve parameters were detected and overlapped with loci affecting growth rate. Dominance effects were generally not significant but from 12 weeks of age they exceeded the additive effect in a few cases. No evidence for epistatic QTL pairs was found.ConclusionsThe results confirm the location for body weight and body weight gain during growth that were identified in previous studies and were consistent with QTL for the parameters of the Gompertz growth function. Chromosome 4 explained a relatively large proportion of the observed growth variation across the different ages, and also harboured most of the detected QTL for Gompertz parameters, confirming its importance in controlling growth. Very few QTL were detected for body weight or gain at 48 and 72 weeks of age, probably reflecting the effect of differences in reproduction and random environmental effects.
Critical age, weight and body composition have been suggested as necessary correlates of sexual maturity. A genome scan to identify quantitative trait loci (QTL) for age and body weight at first egg (AFE and WFE) was conducted on 912 birds from an F(2) broiler-layer cross using 106 microsatellite markers. Without a covariate, QTL for body WFE were detected on chromosomes 2, 4, 8, 27 and Z and a single QTL for AFE was detected on chromosome 2. With AFE as a covariate, additional QTL for body WFE were found on chromosomes 1 and 13, with abdominal fat pad as covariate a QTL for body WFE was found on chromosome 1. With body WFE as covariate, additional QTL for AFE were found on chromosomes 1, 3, 4, 13 and 27. The QTL generally acted additively and there was no evidence for epistasis. Consistent with the original line differences, broiler alleles had positive effects on body WFE and negative effects on AFE, whereas the phenotypic correlation between the two traits was positive. The mapped QTL for body WFE cumulatively accounted for almost half the body weight difference between the chicken lines at puberty. Overlapping QTL for body WFE and body weight to 9 weeks of age indicate that most QTL affecting growth rate also affect body WFE. The co-localisation of QTL for body weight, growth and sexual maturity suggests that body weight and growth rate are closely related to the attainment of sexual maturity and that the genetic determination of growth rate has correlated effects on puberty.
BackgroundThe comparative analysis of genome sequences emerging for several avian species with the fully sequenced chicken genome enables the genome-wide investigation of selective processes in functionally important chicken genes. In particular, because of pathogenic challenges it is expected that genes involved in the chicken immune system are subject to particularly strong adaptive pressure. Signatures of selection detected by inter-species comparison may then be investigated at the population level in global chicken populations to highlight potentially relevant functional polymorphisms.ResultsComparative evolutionary analysis of chicken (Gallus gallus) and zebra finch (Taeniopygia guttata) genes identified interleukin 4 receptor alpha-chain (IL-4Rα), a key cytokine receptor as a candidate with a significant excess of substitutions at nonsynonymous sites, suggestive of adaptive evolution. Resequencing and detailed population genetic analysis of this gene in diverse village chickens from Asia and Africa, commercial broilers, and in outgroup species red jungle fowl (JF), grey JF, Ceylon JF, green JF, grey francolin and bamboo partridge, suggested elevated and balanced diversity across all populations at this gene, acting to preserve different high-frequency alleles at two nonsynonymous sites.ConclusionHaplotype networks indicate that red JF is the primary contributor of diversity at chicken IL-4Rα: the signature of variation observed here may be due to the effects of domestication, admixture and introgression, which produce high diversity. However, this gene is a key cytokine-binding receptor in the immune system, so balancing selection related to the host response to pathogens cannot be excluded.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.