A logging-while-drilling (LWD) caliper is a tool used for the real-time measurement of a borehole diameter in oil drilling engineering. This study introduces the mechanical structure and working principle of a new LWD caliper based on ultrasonic distance measurement (UDM). The detection range is a major performance index of a UDM system. This index is determined by the blind zone length and remote reflecting interface detection capability of the system. To reduce the blind zone length and detect near the reflecting interface, a full bridge acoustic emission technique based on bootstrap gate driver (BGD) and metal-oxide-semiconductor field effect transistor (MOSFET) is designed by analyzing the working principle and impedance characteristics of a given piezoelectric transducer. To detect the remote reflecting interface and reduce the dynamic range of the received echo signals, the relationships between the echo amplitude and propagation distance of ultrasonic waves are determined. A signal compensation technique based on time-varying amplification theory, which can automatically change the gain according to the echo arrival time is designed. Lastly, the aforementioned techniques and corresponding circuits are experimentally verified. Results show that the blind zone length in the UDM system of the LWD caliper is significantly reduced and the capability to detect the remote reflecting interface is considerably improved.
Without the need to pick the arrival times of P- and S-waves, migration-based location methods, such as semblance-based and amplitude-stacking-based location methods, are best applied to microseismic events. By comparing and analyzing the advantages and disadvantages of these two methods, we have developed a new location method using amplitude information and semblance. First, we use the two-point ray-tracing method to calculate the traveltime of body waves from the trial point to each receiver, which determines the time-window positions of the P- and S-waves on all traces. Then, we calculate the semblance of the waveforms and the amplitude stacking of the ratio between the short-time average and the long-time average is computed upon the original waveform over the windows. Finally, the semblance weighted by amplitude stacking is used to image the spatial location of the microseismic events. Using experimental and synthetic data considering different factors that may affect the location result (e.g., the signal-to-noise ratio of the waveforms, the scale of the observation array, and the horizontal and vertical distances from the source to fracture zones), we perform microseismic event location with all three methods. According to the source imaging results from experimental and synthetic tests, the semblance method has great location uncertainty in the radial direction but it has good constraints in the circumferential direction; the amplitude-stacking method exhibits the opposite result; and the weighted-semblance method has good constraints in the circumferential and radial directions because it inherits the advantages of semblance-based and amplitude-stacking-based methods. Therefore, compared with existing migration-based location methods, our weighted-semblance method indicates stronger stability and lower location uncertainty, even when downhole monitoring is conducted with a limited aperture of the receiver array.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.