In this paper, we propose a novel deep attentive sentence ordering network (referred as ATTOrderNet) which integrates self-attention mechanism with LSTMs in the encoding of input sentences. It enables us to capture global dependencies among sentences regardless of their input order and obtains a reliable representation of the sentence set. With this representation, a pointer network is exploited to generate an ordered sequence. The proposed model is evaluated on Sentence Ordering and Order Discrimination tasks. The extensive experimental results demonstrate its effectiveness and superiority to the state-ofthe-art methods.
In this paper, we develop a novel Sparse Self-Attention Fine-tuning model (referred as SSAF) which integrates sparsity into selfattention mechanism to enhance the finetuning performance of BERT. In particular, sparsity is introduced into the self-attention by replacing softmax function with a controllable sparse transformation when fine-tuning with BERT. It enables us to learn a structurally sparse attention distribution, which leads to a more interpretable representation for the whole input. The proposed model is evaluated on sentiment analysis, question answering, and natural language inference tasks. The extensive experimental results across multiple datasets demonstrate its effectiveness and superiority to the baseline methods.
In this paper, we propose a novel deep coherence model (DCM) using a convolutional neural network architecture to capture the text coherence. The text coherence problem is investigated with a new perspective of learning sentence distributional representation and text coherence modeling simultaneously. In particular, the model captures the interactions between sentences by computing the similarities of their distributional representations. Further, it can be easily trained in an end-to-end fashion. The proposed model is evaluated on a standard Sentence Ordering task. The experimental results demonstrate its effectiveness and promise in coherence assessment showing a significant improvement over the state-ofthe-art by a wide margin.
In this paper, we introduce a novel BERTenhanced Relational Sentence Ordering Network (referred to as BERSON) by leveraging BERT for capturing a better dependency relationship among sentences to enhance the coherence modeling for the entire paragraph. In particular, we develop a new Relational Pointer Decoder (referred as RPD) by incorporating the relative ordering information into the pointer network with a Deep Relational Module (referred as DRM), which utilizes BERT to exploit the deep semantic connection and relative ordering between sentences. This enables us to strengthen both local and global dependencies among sentences. Extensive evaluations are conducted on six public datasets. The experimental results demonstrate the effectiveness and promise of BERSON, showing a significant improvement over the state-of-the-art by a wide margin. * Corresponding author An unordered set of sentences Coherent paragraph 1 Dan was walking during the night.1 Dan was walking during the night. 3 They tried to steal his book bag.2 A group of thieves surrounded him. 4 A bystander noticed them.3 They tried to steal his book bag. 2 A group of thieves surrounded him. 4 A bystander noticed them. 5 But she continued to walk away.5 But she continued to walk away.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.