Highlights d RBM39 is recruited to DCAF15 by indisulam through its RRM2 domain d DCAF15 mutations in Q232 and D475 prevent indisulamdependent RBM39 recruitment d RBM23 is an indisulam-dependent neo-substrate for CRL4-DCAF15 d Indisulam-related mRNA expression and RNA splicing changes are RBM39 dependent
c-Myc (hereafter, Myc) is a cancer driver whose abundance is regulated by the SCF Fbw7 ubiquitin ligase and proteasomal degradation. Fbw7 binds to a phosphorylated Myc degron centered at threonine 58 (T58), and mutations of Fbw7 or T58 impair Myc degradation in cancers. Here, we identify a second Fbw7 phosphodegron at Myc T244 that is required for Myc ubiquitylation and acts in concert with T58 to engage Fbw7. While Ras-dependent Myc serine 62 phosphorylation (pS62) is thought to stabilize Myc by preventing Fbw7 binding, we find instead that pS62 greatly enhances Fbw7 binding and is an integral part of a high-affinity degron. Crystallographic studies revealed that both degrons bind Fbw7 in their diphosphorylated forms and that the T244 degron is recognized via a unique mode involving Fbw7 arginine 689 (R689), a mutational hotspot in cancers. These insights have important implications for Myc-associated tumorigenesis and therapeutic strategies targeting Myc stability.
Purpose: Urothelial carcinoma is a malignant cancer with frequent chromosomal aberrations. Here, we investigated the application of a cost-effective, low-coverage whole-genome sequencing technology in detecting all chromosomal aberrations.Experimental Design: Patients with urothelial carcinomas and nontumor controls were prospectively recruited in clinical trial NCT03998371. Urine-exfoliated cell DNA was analyzed by Illumina HiSeq XTen, followed by genotyping with a customized bioinformatics workflow named Urine Exfoliated Cells Copy Number Aberration Detector (UroCAD).Results: In the discovery phase, urine samples from 126 patients with urothelial carcinomas and 64 nontumor disease samples were analyzed. Frequent chromosome copy-number changes were found in patients with tumor as compared with nontumor controls. A novel diagnosis model, UroCAD, was built by incorporating all the autosomal chromosomal changes. The model reached performance of AUC ¼ 0.92 (95% confidence interval, 89.4%-97.3%). At the optimal cutoff, |Z| ≥ 3.21, the sensitivity, specificity, and accuracy were 82.5%, 96.9%, and 89.0%, respectively. The prediction positivity was found correlated with tumor grade (P ¼ 0.01). In the external validation cohort of 95 participants, the UroCAD assay identified urothelial carcinomas with an overall sensitivity of 80.4%, specificity of 94.9%, and AUC of 0.91. Meanwhile, UroCAD assay outperformed cytology tests with significantly improved sensitivity (80.4% vs. 33.9%; P < 0.001) and comparable specificity (94.9% vs. 100%; P ¼ 0.49).Conclusions: UroCAD could be a robust urothelial carcinoma diagnostic method with improved sensitivity and similar specificity as compared with cytology tests. It may be used as a noninvasive approach for diagnosis and recurrence surveillance in urothelial carcinoma prior to the use of cystoscopy, which would largely reduce the burden on patients.
BackgroundSuccinate has been identified by the U.S. Department of Energy as one of the top 12 building block chemicals, which can be used as a specialty chemical in the agricultural, food, and pharmaceutical industries. Escherichia coli are now one of the most important succinate producing candidates. However, the stoichiometric maximum succinate yield under anaerobic conditions through the reductive branch of the TCA cycle is restricted by NADH supply in E. coli.ResultsIn the present work, we report a rational approach to increase succinate yield by regulating NADH supply via pentose phosphate (PP) pathway and enhancing flux towards succinate. The deregulated genes zwf243 (encoding glucose-6-phosphate dehydrogenase) and gnd361 (encoding 6-phosphogluconate dehydrogenase) involved in NADPH generation from Corynebacterium glutamicum were firstly introduced into E. coli for succinate production. Co-expression of beneficial mutated dehydrogenases, which removed feedback inhibition in the oxidative part of the PP pathway, increased succinate yield from 1.01 to 1.16 mol/mol glucose. Three critical genes, pgl (encoding 6-phosphogluconolactonase), tktA (encoding transketolase) and talB (encoding transaldolase) were then overexpressed to redirect more carbon flux towards PP pathway and further improved succinate yield to 1.21 mol/mol glucose. Furthermore, introducing Actinobacillus succinogenes pepck (encoding phosphoenolpyruvate carboxykinase) together with overexpressing sthA (encoding soluble transhydrogenase), further increased succinate yield to 1.31 mol/mol glucose. In addition, removing byproduct formation through inactivating acetate formation genes ackA-pta and heterogenously expressing pyc (encoding pyruvate carboxylase) from C. glutamicum led to improved succinate yield to 1.4 mol/mol glucose. Finally, synchronously overexpressing dcuB and dcuC encoding succinate exporters enhanced succinate yield to 1.54 mol/mol glucose, representing 52 % increase relative to the parent strain and amounting to 90 % of the strain-specific stoichiometric maximum (1.714 mol/mol glucose).ConclusionsIt’s the first time to rationally regulate pentose phosphate pathway to improve NADH supply for succinate synthesis in E. coli. 90 % of stoichiometric maximum succinate yield was achieved by combining further flux increase towards succinate and engineering its export. Regulation of NADH supply via PP pathway is therefore recommended for the production of products that are NADH-demanding in E. coli.Electronic supplementary materialThe online version of this article (doi:10.1186/s12934-016-0536-1) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.