In this work, we study the method for determining the maximum of the minority carrier recombination velocity at the junction Sf max , corresponding to the maximum power delivered by the photovoltaic generator. For this, we study the temperature influence on the behavior of the front white biased solar cell in steady state. By solving the continuity equation of excess minority carrier in the base, we have established the expressions of the photocurrent density, the recombination velocity on the back side of the base Sb, and the photovoltage. The photocurrent density and the photovoltage are plotted as a function of Sf, called, minority carrier recombination velocity at the junction surface, for different temperature values. The illuminated I-V characteristic curves of the solar cell are then derived. To better characterize the solar cell, we study the electrical power delivered by the base of the solar cell to the external charge circuit as either junction surface recombination velocity or photovoltage dependent. From the output power versus junction surface recombination velocity Sf, we have deduced an eigenvalue equation depending on junction recombination velocity. This equation allows to obtain the maximum junction recombination velocity Sf max corresponding to the maximum power delivered by the photovoltaic generator, throughout simulink model. Finally, we deduce the conversion efficiency of the solar cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.