Nb superconducting radio-frequency (SRF) cavities are observed to break down and lose their high-Q superconducting properties at accelerating gradients below the limits imposed by theory. The microscopic origins of SRF cavity breakdown are still a matter of some debate. To investigate these microscopic issues, temperature-and power-dependent local third-harmonic response is measured on bulk Nb and Nb thin-film samples using a novel near-field magnetic microwave microscope between 2.9 and 10 K and 2 and 6 GHz. Both periodic and nonperiodic response as a function of applied rf field amplitude are observed. We attribute these features to extrinsic and intrinsic nonlinear responses of the sample. The rf-current-biased resistively shunted junction (RSJ) model can account for the periodic response and fits very well to the data using reasonable parameters. The nonperiodic response is consistent with vortex semiloops penetrating into the bulk of the sample once sufficiently high rf magnetic field is applied and the data can be fit to a time-dependent Ginzburg-Landau (TDGL) model of this process. The fact that these responses are measured on a wide variety of Nb samples suggests that we are capturing the generic nonlinear response of air-exposed Nb surfaces. arXiv:1904.07432v3 [cond-mat.supr-con]
We apply time-dependent Ginzburg Landau (TDGL) numerical simulations to study the finite frequency electrodynamics of superconductors subjected to intense rf magnetic field. Much recent TDGL work has focused on spatially uniform external magnetic field and largely ignores the Meissner state screening response of the superconductor. In this work, we solve the TGDL equations for a spatially non-uniform magnetic field created by a point magnetic dipole in the vicinity of a semiinfinite superconductor. A novel two-domain simulation is performed to accurately capture the effect of the inhomogeneous applied fields and the resulting screening currents. The creation and dynamics of vortex semiloops penetrating deep into the superconductor domain is observed and studied, and the resulting third-harmonic nonlinear response of the sample is calculated. The effects of slow order parameter dynamics and point-like defects on vortex semi-loop behaviour is also studied. This simulation method will assist our understanding of the limits of superconducting response to intense rf magnetic fields.
Boron-doped diamond granular thin films are known to exhibit superconductivity with an optimal critical temperature of Tc=7.2 K. Here, we report the measured in-plane complex surface impedance of boron-doped diamond films in the microwave frequency range using a resonant technique. Experimentally measured inductance values are in good agreement with estimates obtained from the normal state sheet resistance of the material. The magnetic penetration depth temperature dependence is consistent with that of a fully gapped s-wave superconductor. Boron-doped diamond films should find application where high kinetic inductance is needed, such as microwave kinetic inductance detectors and quantum impedance devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.