In this paper, a new design of high gain and wide bandwidth microstrip patch antenna array containing double meander dipole structure is proposed. Two in-phase resonant frequencies in the Ku-band (12–18 GHz) could be achieved in the double meander dipole array structure, which lead to enhance impedance bandwidth without costing extra design section. Besides, further enhanced gain of 2 dBi of the array over the entire operating frequency range has been achieved by introducing a double-layer substrate technique. The proposed antenna has been fabricated using the E33 model LPKF prototyping PCB machine. The measurement results have been performed, and they are in very good agreement with the simulation results. The measured –10 dB impedance bandwidth indicates that the array provides a very wide bandwidth which is around 30% at the center frequency of 15.5 GHz. A stable gain with a peak value of 10 dBi is achieved over the operating frequency range. The E- and H-plane radiation patterns are simulated, and a very low sidelobe level is predicted. The proposed antenna is simple and has relatively low-profile, and it could be a good candidate for millimeter wave communications.
Universal Mobile Telecommunications System (UMTS), is the third generation (3G) of mobile communication which is based on the wideband code division multiple access (W-CDMA) radio access to provide bandwidth and spectral efficiency. Interference in 3G system is significantly lower compared to the preceded generations. However, it does not mean 3G is free from the issues associated with interferences, such as low signal quality and call drop. The interference level in UMTS can be measured by using the well-known parameter Received Total Wideband Power (RTWP). This parameter is affected by many factors such as number of the users connected to the system, combining second generation (2G) and 3G frequencies within the same geographical area, geographical causes (difference of Altitude), and hardware impairment. In this paper we intensively study how these factors affect the uplink interference level (i.e. RTWP value) in 3G system used by a particular telecommunications company, Asiacell company, Iraq. The obtained data shows that call drop is the most serious issue raised due to high value of RTWP in 3G system. We demonstrate that system enhancement, in terms of lower RTWP level, are obtained by adding second carrier to the sites, separating 2G band from 3G band using special filter, and optimizing the hardware components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.