Geoscientists now live in a world rich with digital data and methods, and their computational research cannot be fully captured in traditional publications. The Geoscience Paper of the Future (GPF) presents an approach to fully document, share, and cite all their research products including data, software, and computational provenance. This article proposes best practices for GPF authors to make data, software, and methods openly accessible, citable, and well documented. The publication of digital objects empowers scientists to manage their research products as valuable scientific assets in an open and transparent way that enables broader access by other scientists, students, decision makers, and the public. Improving documentation and dissemination of research will accelerate the pace of scientific discovery by improving the ability of others to build upon published work.
Many geoscience disciplines utilize complex computational models for advancing understanding and sustainable management of Earth systems. Executing such models and their associated data preprocessing and postprocessing routines can be challenging for a number of reasons including (1) accessing and preprocessing the large volume and variety of data required by the model, (2) postprocessing large data collections generated by the model, and (3) orchestrating data processing tools, each with unique software dependencies, into workflows that can be easily reproduced and reused. To address these challenges, the work reported in this paper leverages the Workflow Structured Object functionality of the Integrated Rule-Oriented Data System and demonstrates how it can be used to access distributed data, encapsulate hydrologic data processing as workflows, and federate with other community-driven cyberinfrastructure systems. The approach is demonstrated for a study investigating the impact of drought on populations in the Carolinas region of the United States. The analysis leverages computational modeling along with data from the Terra Populus project and data management and publication services provided by the Sustainable Environment-Actionable Data project. The work is part of a larger effort under the DataNet Federation Consortium project that aims to demonstrate data and computational interoperability across cyberinfrastructure developed independently by scientific communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.