Consumer interest in grass-fed beef has been steadily rising due to consumer perception of its potential benefits. This interest has led to a growing demand for niche market beef, particularly in the western United States. Therefore, the objective of this study was to assess the impact of feeding systems on the change in microbial counts, color, and lipid oxidation of steaks during retail display, and on their sensory attributes. The systems included: conventional grain-fed (CON), 20 months-grass-fed (20GF), 25-months-grass-fed (25GF) and 20-months-grass-fed + 45-day-grain-fed (45GR). The results indicate that steaks in the 20GF group displayed a darker lean and fat color, and a lower oxidation state than those in the 25GF group. However, the feeding system did not have an impact on pH or objective tenderness of beef steaks. In addition, consumers and trained panelist did not detect a difference in taste or flavor between the 20GF or 25GF steaks but expressed a preference for the CON and 45GR steaks, indicating that an increased grazing period may improve the color and oxidative stability of beef, while a short supplementation with grain may improve eating quality.
This study was conducted to evaluate the effect of red macroalgae Asparagopsis taxiformis (A. taxiformis) supplementation for cattle on the shelf life of fresh beef steaks (longissimus dorsi). Three treatment groups (7 steers per treatment) included: 1) Control diet, 2) Control diet + 0.25 % of macroalgae inclusion (LD) and 3) Control + 0.5% of macroalgae inclusion (HD). After the animals were harvested, the strip loins from all animals were collected and aged for 14 days at the meat lab of the University of California, Davis. Then the strip loins were cut into steaks, packaged, and placed on a retail display case for 6 days. During a retail display, instrumental color (L*, a*, and b*) of lean muscle and external fat surfaces were measured every 12 hours. Bacterial counts for total aerobic mesophilic bacteria (AMB), aerobic psychrotrophic bacteria (APB), and lactic acid bacteria (LAB) were assessed on days 0, 3 and 6 of retail display. The thiobarbituric acid reactive substances (TBARS) analysis was conducted to measure the lipid oxidation and the pH was also assessed on days 0, 3, and 6. No interactive effect between treatments and time on the shelf life of steaks was observed. The high dose red macroalgae supplement decreased (P < 0.05) the lightness (L*) of the surface muscle of the steaks, while the lightness of the external fat was not affected (P < 0.05) by treatments throughout the retail display. The external fat yellowness of the steaks was lower (P < 0.05) in LD and HD treatment groups compared to the control group. An increase (P < 0.05) in counts of AMB, APB, and LAB was observed on the steaks from the steers in the HD treatment group while steaks in Control and LD group had similar bacterial numbers throughout the retail display. The results indicated that the shelf life of steaks from cattle in LD group remained the same as that of the Control group, but the high dose of A. taxiformis caused a darker color of steaks with higher microbial counts, which may lead to a shortened shelf life due to undesirable appearance and faster microbial spoilage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.