Software reliability plays a vital role in the emerging field of digitalization. Everyone wants cost and time-efficient software along with reliability which is achieved using CBS. In CBS, if the individual components are computed for a large or complicated system, then integration becomes complex which results in difficulty in predicting CBSR. To solve this problem several computational intelligence techniques such as SVM, ACO, PSO, ABC, GA, Neural network, are used but in our paper, we have focused on optimization techniques Fuzzy, ACO, ABC, PSO. These techniques help in estimating and predicting reliability models for CBS. Also, we have done, an assessment and comparative analysis based on a literature review of ABC, ACO, and PSO that have also been presented, for choosing suitable parameters for software reliability modeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.