Summary
The customary terrestrial survey involves direct measurement of the land dimension in a particular area. The information accuracy of land dimension changes person to person in the existing method. Moreover, it consumes more time to conduct an assessment and produces a precise outcome. Hence, Remote Sensing offers an effective solution for accurate measurement using the Land Satellite Image Mapping with Geographic Positioning System (GPS) values. Therefore, the proposed model concentrates on the analysis of the object using Landsat Image through categorization based on the field cover analysis. The Geographic Information System (GIS) facilitates convenient measurement to determine the land dimension along with Georeferential tag. In addition to that, the features of each object are preprocessed to reduce the noise and the acquired information is stored in the classifier. Also, the features are trained using 2‐fold validation, which will improve efficiency during detection. Finally, the soft hyperplane discriminators of Gaussian produce better separation accuracy compared to feature classes and object prediction. Furthermore, the Bag of feature model performance is improved by working on Hue, Saturation, and Intensity color map with multifeatured extractions on the sample images. The proposed model was trained with 1800 image samples of various land covers. On testing, the classifiers aggregate 91.4% accuracy on cross‐evaluation between true class and predicted class using medium Gaussian Support Vector Machine.
The Editor-in-Chief and the publisher have retracted this article. This article was submitted to be part of a guestedited issue. An investigation concluded that the editorial process of this guest-edited issue was compromised by a third party and that the peer review process has been manipulated. Based on the investigation's findings, the Editor-in-Chief therefore no longer has confidence in the results and conclusions of this article.M. Sornalakshmi and S. Balamurali disagree with this retraction. Seifedine Kadry and Bala Anand Muthu have not explicitly stated whether they agree to this retraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.