We introduce resource augmentation as a method for analyzing online scheduling problems. In resource augmentation analysis the on-line scheduler is given more resources, say faster processors or more processors, than the adversary. We apply this analysis to two well-known on-line scheduling problems, the classic uniprocessor CPU scheduling problem 1͉r i , pmtn͉͚ F i , and the best-effort firm real-time scheduling problem 1͉r i , pmtn͉͚ w i (1 Ϫ U i ). It is known that there are no constant competitive nonclairvoyant on-line algorithms for these problems. We show that there are simple on-line scheduling algorithms for these problems that are constant competitive if the online scheduler is equipped with a slightly faster processor than the adversary. Thus, a moderate increase in processor speed effectively gives the on-line scheduler the power of clairvoyance. Furthermore, the on-line scheduler can be constant competitive on all inputs that are not closely correlated with processor speed. We also show that the performance of an on-line scheduler in best-effort real time scheduling can be significantly improved if the system is designed in such a way that the laxity of every job is proportional to its length.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.