Human monocytes have been grouped into classical (CD14++CD16−), non-classical (CD14dimCD16++), and intermediate (CD14++CD16+) subsets. Documentation of normal function and variation in this complement of subtypes, particularly their differentiation potential to dendritic cells (DC) or macrophages, remains incomplete. We therefore phenotyped monocytes from peripheral blood of healthy subjects and performed functional studies on high-speed sorted subsets. Subset frequencies were found to be tightly controlled over time and across individuals. Subsets were distinct in their secretion of TNFα, IL-6, and IL-1β in response to TLR agonists, with classical monocytes being the most producers and non-classical monocytes the least. Monocytes, particularly those of the non-classical subtype, secreted interferon-α (IFN-α) in response to intracellular TLR3 stimulation. After incubation with IL-4 and GM-CSF, classical monocytes acquired monocyte-derived DC (mo-DC) markers and morphology and stimulated allogeneic T cell proliferation in MLR; intermediate and non-classical monocytes did not. After incubation with IL-3 and Flt3 ligand, no subset differentiated to plasmacytoid DC. After incubation with GM-CSF (M1 induction) or macrophage colony-stimulating factor (M-CSF) (M2 induction), all subsets acquired macrophage morphology, secreted macrophage-associated cytokines, and displayed enhanced phagocytosis. From these studies we conclude that classical monocytes are the principal source of mo-DCs, but all subsets can differentiate to macrophages. We also found that monocytes, in particular the non-classical subset, represent an alternate source of type I IFN secretion in response to virus-associated TLR agonists.
Aims:The aerosolization and collection of submicrometre and ultrafine virus particles were studied with the objective of developing robust and accurate methodologies to study airborne viruses. Methods and Results: The collection efficiencies of three sampling devices used to sample airborne biological particles -the All Glass Impinger 30, the SKC BioSamplerÒ and a frit bubbler -were evaluated for submicrometre and ultrafine virus particles. Test virus aerosol particles were produced by atomizing suspensions of single-stranded RNA and double-stranded DNA bacteriophages. Size distribution results show that the fraction of viruses present in typical aqueous virus suspensions is extremely low such that the presence of viruses has little effect on the particle size distribution of atomized suspensions. It has been found that none of the tested samplers are adequate in collecting submicrometre and ultrafine virus particles, with collection efficiencies for all samplers below 10% in the 30-100 nm size range. Plaque assays and particle counting measurements showed that all tested samplers have time-varying virus particle collection efficiencies. A method to determine the size distribution function of viable virus containing particles utilizing differential mobility selection was also developed. Conclusions: A combination of differential mobility analysis and traditional plaque assay techniques can be used to fully characterize airborne viruses. Significance and Impact of the Study: The data and methods presented here provide a fundamental basis for future studies of submicrometre and ultrafine airborne virus particles.
The ability to analyze and identify large macromolecular complexes whose molecular weight is beyond the analyzable range of mass spectrometry is of great interest. The size of such complexes makes them suitable for analysis via mobility size spectrometry. In this work, charge reduced electrospray size spectrometry was used for the analysis of bacteriophage viruses with total molecular masses ranging from 3.6 MDa up to the gigadalton range. The electrospray source used was operated in "cone jet" mode with a mean droplet diameter of 170.56 nm. Bacteriophage MS2 was found to have a mobility diameter of 24.13 +/- 0.06 nm and remain highly viable after the electrospray process. Larger bacteriophages T2 and T4 have lengths greater than the diameter of the electrospray jet and droplets; thus, they could not be completely enclosed and were found to fragment at the virus capsid head-tail noncovalent interface during either the jet formation or jet breakup process. No viable T2 or T4 virions were detectable after being electrosprayed. While the exact mechanism of fragmentation could not be determined, it is proposed here that macromolecular fragmentation at noncovalent interfaces occurs due to mechanically and electrically induced stresses during jet formation and jet breakup. Bacteriophage T4 capsid heads were found to be statistically significantly larger than bacteriophage T2 capsid heads, with a mean peak diameter of 88.32 +/- 1.02 nm for T4 and 87.03 +/- 0.18 nm for T2. While capsid head fragments were detectable, tail and tail-fiber fragments could not be detected by size spectrometric analysis. This is attributed to the fact that the contractile tails of bacteriophage T2 and T4 virions mechanically deform to a varying degree while confined within the smaller jet and droplets. Further evidence of contractile tail deformation during the electrospray process was found by measuring the size spectrum of bacteriophage lambda, which has a noncontractile tail. Bacteriophage lambda had two distinct peaks in its size spectrum, one corresponding to the capsid head and the other corresponding to the tail fragment. Size spectrometry was also used for rapid quantification of virus concentrations, thus demonstrating its full capabilities in the analysis of large macromolecular complexes.
Chronic rejection is the primary cause of long-term failure of transplanted organs and is often viewed as an antibody-dependent process. Chronic rejection, however, is also observed in mice and humans with no detectable circulating alloantibodies, suggesting that antibody-independent pathways may also contribute to pathogenesis of transplant rejection. Here, we have provided direct evidence that chronic rejection of vascularized heart allografts occurs in the complete absence of antibodies, but requires the presence of B cells. Mice that were deficient for antibodies but not B cells experienced the same chronic allograft vasculopathy (CAV), which is a pathognomonic feature of chronic rejection, as WT mice; however, mice that were deficient for both B cells and antibodies were protected from CAV. B cells contributed to CAV by supporting splenic lymphoid architecture, T cell cytokine production, and infiltration of T cells into graft vessels. In chimeric mice, in which B cells were present but could not present antigen, both T cell responses and CAV were markedly reduced. These findings establish that chronic rejection can occur in the complete absence of antibodies and that B cells contribute to this process by supporting T cell responses through antigen presentation and maintenance of lymphoid architecture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.