Chrysomycin A isolated from Streptomyces sp. OA161 is bactericidal to Mycobacterium tuberculosis, methicillin resistant Staphylococcus aureus and vancomycin resistant Enterococcus faecalis.
Rv3334 protein of Mycobacterium tuberculosis belongs to the MerR family of transcriptional regulators and is upregulated during hypoxia and other stress conditions. Employing GFP reporter constructs, mobility shift assays and ChIP assays, we demonstrate that Rv3334 binds to its own promoter and acts as an autorepressor. We were able to locate a 22 bp palindrome in its promoter that we show to be the cognate binding sequence of Rv3334. Using chase experiments, we could conclusively prove the requirement of this palindrome for Rv3334 binding. Recombinant Rv3334 readily formed homodimers in vitro, which could be necessary for its transcriptional regulatory role in vivo. Although the DNA‐binding activity of the protein was abrogated by the presence of certain divalent metal cations, the homodimer formation remained unaffected. In silico predictions and subsequent assays using GFP reporter constructs and mobility shift assays revealed that the expression of ketosteroid regulator gene (kstR), involved in lipid catabolism, is positively regulated by Rv3334. ChIP assays with aerobically grown M. tuberculosis as well as dormant bacteria unambiguously prove that Rv3334 specifically upregulates expression of kstR during dormancy. Our study throws light on the possible role of Rv3334 as a master regulator of lipid catabolism during hypoxia‐induced dormancy.
In cervical cancer, the association between HPV infection and dysregulation of phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway (PI3K/AKT/mTOR pathway) places mTOR as an attractive therapeutic target. The failure of current treatment modalities in advanced stages of this cancer and drawbacks of already available mTOR inhibitors demand for novel drug candidates. In the present study we identified the presence of a mTOR inhibitor in an active fraction of the ethyl acetate extract of Streptomyces sp OA293. The metabolites(s) in the active fraction completely inhibited mTORC1 and thereby suppressed activation of both of its downstream targets, 4E-BP1 and P70S6k, in cervical cancer cells. In addition, it also stalled Akt activation via inhibition of mTORC2. The mechanism of mTOR inhibition detailed in our study overcomes significant drawbacks of well known mTOR inhibitors such as rapamycin and rapalogs. The active fraction induced autophagy and Bax mediated apoptosis suggesting that mTOR inhibition resulted in programmed cell death of cancer cells. The molecular weight determination of the components in active fraction confirmed the absence of any previously known natural mTOR inhibitor. This is the first report of complete mTOR complex inhibition by a product derived from microbial source.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.