Abstract-This paper presents MobiMix, a road network based mix-zone framework to protect location privacy of mobile users traveling on road networks. In contrast to spatial cloaking based location privacy protection, the approach in MobiMix is to break the continuity of location exposure by using mix-zones, where no applications can trace user movement. This paper makes two original contributions. First, we provide the formal analysis on the vulnerabilities of directly applying theoretical rectangle mix-zones to road networks in terms of anonymization effectiveness and attack resilience. We argue that effective mixzones should be constructed and placed by carefully taking into consideration of multiple factors, such as the geometry of the zones, the statistical behavior of the user population, the spatial constraints on movement patterns of the users, and the temporal and spatial resolution of the location exposure. Second, we develop a suite of road network mix-zone construction methods that provide higher level of attack resilience and yield a specified lower-bound on the level of anonymity. We evaluate the MobiMix approach through extensive experiments conducted on traces produced by GTMobiSim on different scales of geographic maps. Our experiments show that MobiMix offers high level of anonymity and high level of resilience to attacks, compared to existing mix-zone approaches.
Abstract-In the Internet of Things(IoT) era, the demands for low-latency computing for time-sensitive applications (e.g., location-based augmented reality games, real-time smart grid management, real-time navigation using wearables) has been growing rapidly. Edge Computing provides an additional layer of infrastructure to fill latency gaps between the IoT devices and the back-end computing infrastructure. In the edge computing model, small-scale micro-datacenters that represent ad-hoc and distributed collection of computing infrastructure pose new challenges in terms of management and effective resource sharing to achieve a globally efficient resource allocation. In this paper, we propose Zenith, a novel model for allocating computing resources in an edge computing platform that allows service providers to establish resource sharing contracts with edge infrastructure providers apriori. Based on the established contracts, service providers employ a latency-aware scheduling and resource provisioning algorithm that enables tasks to complete and meet their latency requirements. The proposed techniques are evaluated through extensive experiments that demonstrate the effectiveness, scalability and performance efficiency of the proposed model.
Abstract-This paper presents a new MapReduce cloud service model, Cura, for provisioning cost-effective MapReduce services in a cloud. In contrast to existing MapReduce cloud services such as a generic compute cloud or a dedicated MapReduce cloud, Cura has a number of unique benefits. Firstly, Cura is designed to provide a cost-effective solution to efficiently handle MapReduce production workloads that have a significant amount of interactive jobs. Secondly, unlike existing services that require customers to decide the resources to be used for the jobs, Cura leverages MapReduce profiling to automatically create the best cluster configuration for the jobs. While the existing models allow only a per-job resource optimization for the jobs, Cura implements a globally efficient resource allocation scheme that significantly reduces the resource usage cost in the cloud. Thirdly, Cura leverages unique optimization opportunities when dealing with workloads that can withstand some slack. By effectively multiplexing the available cloud resources among the jobs based on the job requirements, Cura achieves significantly lower resource usage costs for the jobs. Cura's core resource management schemes include cost-aware resource provisioning, VM-aware scheduling and online virtual machine reconfiguration. Our experimental results using Facebook-like workload traces show that our techniques lead to more than 80% reduction in the cloud compute infrastructure cost with upto 65% reduction in job response times.
Advances in Blockchain and distributed ledger technologies are driving the rise of incentivized social media platforms over Blockchains, where no single entity can take control of the information and users can receive cryptocurrency as rewards for creating or curating high-quality contents. This paper presents an empirical analysis of Steemit, a key representative of these emerging platforms, to understand and evaluate the actual level of decentralization and the practical effects of cryptocurrency-driven reward system in these modern social media platforms. Similar to Bitcoin, Steemit is operated by a decentralized community, where 21 members are periodically elected to cooperatively operate the platform through the Delegated Proof-of-Stake (DPoS) consensus protocol. Our study performed on 539 million operations performed by 1.12 million Steemit users during the period 2016/03 to 2018/08 reveals that the actual level of decentralization in Steemit is far lower than the ideal level, indicating that the DPoS consensus protocol may not be a desirable approach for establishing a highly decentralized social media platform. In Steemit, users create contents as posts which get curated based on votes from other users. The platform periodically issues cryptocurrency as rewards to creators and curators of popular posts. Although such a reward system is originally driven by the desire to incentivize users to contribute to high-quality contents, our analysis of the underlying cryptocurrency transfer network on the blockchain reveals that more than 16% transfers of cryptocurrency in Steemit are sent to curators suspected to be bots and also finds the existence of an underlying supply network for the bots, both suggesting a significant misuse of the current reward system in Steemit. Our study is designed to provide insights on the current state of this emerging blockchain-based social media platform including the effectiveness of its design and the operation of the consensus protocols and the reward system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.