Molecular typing of 964 specimens from patients in Ethiopia with lymph node or pulmonary tuberculosis showed a similar distribution of Mycobacterium tuberculosis strains between the 2 disease manifestations and a minimal role for M. bovis. We report a novel phylogenetic lineage of M. tuberculosis strongly associated with the Horn of Africa.
Background and objectives Mycobacterium bovis and Mycobacterium caprae are two of the most important agents of tuberculosis in livestock and the most important causes of zoonotic tuberculosis in humans. However, little is known about the global population structure, phylogeography and evolutionary history of these pathogens. Methodology We compiled a global collection of 3364 whole-genome sequences from M.bovis and M.caprae originating from 35 countries and inferred their phylogenetic relationships, geographic origins and age. Results Our results resolved the phylogenetic relationship among the four previously defined clonal complexes of M.bovis, and another eight newly described here. Our phylogeographic analysis showed that M.bovis likely originated in East Africa. While some groups remained restricted to East and West Africa, others have subsequently dispersed to different parts of the world. Conclusions and implications Our results allow a better understanding of the global population structure of M.bovis and its evolutionary history. This knowledge can be used to define better molecular markers for epidemiological investigations of M.bovis in settings where whole-genome sequencing cannot easily be implemented. Lay summary During the last few years, analyses of large globally representative collections of whole-genome sequences (WGS) from the human-adapted Mycobacterium tuberculosis complex (MTBC) lineages have enhanced our understanding of the global population structure, phylogeography and evolutionary history of these pathogens. In contrast, little corresponding data exists for M. bovis, the most important agent of tuberculosis in livestock. Using whole-genome sequences of globally distributed M. bovis isolates, we inferred the genetic relationships among different M. bovis genotypes distributed around the world. The most likely origin of M. bovis is East Africa according to our inferences. While some M. bovis groups remained restricted to East and West Africa, others have subsequently dispersed to different parts of the world driven by cattle movements.
Despite huge global efforts in tuberculosis (TB) control, pastoral areas remain under-investigated. During two years sputum and fine needle aspirate (FNA) specimens were collected from 260 Ethiopian pastoralists of Oromia and Somali Regional States with suspected pulmonary TB and from 32 cases with suspected TB lymphadenitis. In parallel, 207 suspected tuberculous lesions were collected from cattle, camels and goats at abattoirs. All specimens were processed and cultured for mycobacteria; samples with acid-fast stained bacilli (AFB) were further characterized by molecular methods including genus and deletion typing as well as spoligotyping. Non-tuberculous mycobacteria (NTM) were sequenced at the 16S rDNA locus. Culturing of AFB from human sputum and FNA samples gave a yield of 174 (67%) and 9 (28%) isolates, respectively. Molecular typing was performed on 173 of these isolates and 160 were confirmed as Mycobacterium tuberculosis, three as M. bovis, and the remaining 10 were typed as NTMs. Similarly, 48 AFB isolates (23%) yielded from tuberculous lesions of livestock, of which 39 were molecular typed, including 24 M. bovis and 4 NTMs from cattle, 1 M. tuberculosis and 1 NTM from camels and 9 NTMs from goats. Isolation of M. bovis from humans and M. tuberculosis from livestock suggests transmission between livestock and humans in the pastoral areas of South-East Ethiopia
SummaryColonial medical reports claimed that tuberculosis (TB) was largely unknown in Africa prior to European contact, providing a “virgin soil” for spread of TB in highly susceptible populations previously unexposed to the disease [1, 2]. This is in direct contrast to recent phylogenetic models which support an African origin for TB [3, 4, 5, 6]. To address this apparent contradiction, we performed a broad genomic sampling of Mycobacterium tuberculosis in Ethiopia. All members of the M. tuberculosis complex (MTBC) arose from clonal expansion of a single common ancestor [7] with a proposed origin in East Africa [3, 4, 8]. Consistent with this proposal, MTBC lineage 7 is almost exclusively found in that region [9, 10, 11]. Although a detailed medical history of Ethiopia supports the view that TB was rare until the 20th century [12], over the last century Ethiopia has become a high-burden TB country [13]. Our results provide further support for an African origin for TB, with some genotypes already present on the continent well before European contact. Phylogenetic analyses reveal a pattern of serial introductions of multiple genotypes into Ethiopia in association with human migration and trade. In place of a “virgin soil” fostering the spread of TB in a previously naive population, we propose that increased TB mortality in Africa was driven by the introduction of European strains of M. tuberculosis alongside expansion of selected indigenous strains having biological characteristics that carry a fitness benefit in the urbanized settings of post-colonial Africa.
To assess seroprevalences of and in pastoral livestock in southeast Ethiopia, a cross-sectional study was carried out in three livestock species (cattle, camels and goats). The study was conducted from July 2008 to August 2010, and eight pastoral associations (PAs) from the selected districts were included in the study. Sera from a total of 1830 animals, comprising 862 cattle, 458 camels and 510 goats were screened initially with Rose Bengal plate test (RBPT) for . All RBPT positive and 25% of randomly selected negative sera were further tested by ELISA. These comprise a total of 460 animals (211 cattle, 102 camels and 147 goats). Out of sera from total of 1830 animals, 20% were randomly selected (180 cattle, 90 camels and 98 goats) and tested for using ELISA. The seroprevalences of was 1.4% (95% confidence interval (CI), 0.8-2.6), 0.9% (95% CI, 0.3-2.7)b and 9.6% (95% CI, 5.2-17.1) in cattle, camels and goats, respectively. Goats and older animals were at higher risk of infection (OR=7.3, 95% CI, 2.8-19.1) and (OR=1.7 95% CI, 0.9-2.9), respectively. Out of 98 RBPT negative camel sera, 12.0% were positive for ELISA. The seroprevalences of were 31.6% (95% CI, 24.7-39.5), 90.0% (95% CI, 81.8-94.7) and 54.2% (95% CI, 46.1-62.1) in cattle, camels and goats, respectively. We found positive animals for test in all tested PAs for all animal species. Being camel and older animal was a risk factor for infection (OR=19.0, 95% CI, 8.9-41.2) and (OR=3.6, 95% CI, 2.0-6.6), respectively. High seropositivity of in all livestock species tested and higher seropositive in goats for , implies risks of human infection by both diseases. Thus, merit necessity of further study of both diseases in animals and humans in the area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.