OBJECTIVEGlucose intolerance in pregnancy predicts an increased risk of future type 2 diabetes mellitus (T2DM) that is proportional to the severity of antepartum dysglycemia (i.e., highest in women with gestational diabetes mellitus [GDM], followed by those with milder dysglycemia). However, the pathophysiologic changes driving this risk are not known. Thus, we evaluated the longitudinal changes in b-cell function, insulin sensitivity, and glycemia in the first 3 years postpartum after gestational dysglycemia.
RESEARCH DESIGN AND METHODSA total of 337 women underwent glucose challenge test (GCT) and oral glucose tolerance test (OGTT) in pregnancy, followed by repeat OGTT at 3 months, 1 year, and 3 years postpartum. The antepartum GCT/OGTT identified four gestational glucose tolerance groups: GDM (n = 105); gestational impaired glucose tolerance (GIGT; n = 60); abnormal GCT, followed by normal glucose tolerance (NGT) on the OGTT (abnormal GCT NGT; n = 96); and normal GCT with NGT (n = 76).
RESULTSAt each of 3 months, 1 year, and 3 years postpartum, the prevalence of glucose intolerance increased from normal GCT NGT to abnormal GCT NGT to GIGT to GDM (all P < 0.001), whereas b-cell function, assessed by the Insulin SecretionSensitivity Index-2 (ISSI-2), and insulin sensitivity (Matsuda index), progressively decreased across the groups (all P < 0.002). Each group predicted distinct trajectories of ISSI-2, Matsuda index, and fasting and 2-h glucose (all P < 0.001). Notably, GDM, GIGT, and abnormal GCT NGT predicted varying rates of declining b-cell function and insulin sensitivity, as well as rising glycemia, compared with normal GCT NGT.
CONCLUSIONSEach degree of gestational glucose intolerance predicts distinct trajectories of b-cell function, insulin sensitivity, and glycemia in the first 3 years postpartum that drive their differential risk of future T2DM.