The dawn of 3D printing in medicine has given the field the hope of vitality in many patients fighting a multitude of diseases. Also entitled bioprinting, this appertains to its sequential printing of precursor ink, embodying cells and polymer/composite in a predetermined trajectory. The precursor ink, in addition to cells, is predominantly constituted of hydrogels due to its biodegradability and ability to mimic the body’s anatomy and mechanical features, e.g. bones, etc. This review paper is devoted to explicating the bioprinting (3D/4D) of alginate hydrogels, which are extracts from brown algae, through extrusion additive manufacturing. Alginates are salt derivatives of alginic acid and constitute long chains of polysaccharides, which provides pliability and gelling adeptness to their structure. Alginate hydrogel (employed for extrusion) can be pristine or composite relying on the requisite properties (target application controlled or in vivo environment), e.g. alginate-natural (gelatin/agarose/collagen/hyaluronic acid/etc) and alginate-synthetic (polyethylene glycol (PEG)/pluronic F-127/etc). Extrusion additive manufacturing of alginate is preponderate among others with its uncomplicated processing, material efficiency (cut down on wastage), and outspread adaptability for viscosities (0.03–6 * 104 Pa.s), but the procedure is limited by resolution (200 μm) in addition to accuracy. However, 3D-fabricated biostructures display rigidness (unvarying with conditions) i.e. lacks a smart response, which is reassured by accounting time feature as a noteworthy accessory to printing, interpreted as 4D bioprinting. This review propounds the specific processing itinerary for alginate (meanwhile traversing across its composites/blends with natural and synthetic consideration) in extrusion along with its pre-/during/post-processing parameters intrinsic to the process. Furthermore, propensity is also presented in its (alginate extrusion processing) application for tissue engineering, i.e. bones, cartilage (joints), brain (neural), ear, heart (cardiac), eyes (corneal), etc, due to a worldwide quandary over accessibility to natural organs for diverse types of diseases. Additionally, the review contemplates recently invented advance printing, i.e. 4D printing for biotic species, with its challenges and future opportunities.
Graphene, graphene oxide (GO), and their composites have been prominently utilized for wastewater purification because of their adsorption, oxidation, and catalytic properties. Graphene and GO and its composites naturally have significant pore volume, high conductivity, rich surface chemistry, and an exceptionally large aspect ratio which make it favorable for adsorption and catalysis of organic pollutants from wastewater. The sheet-like, resonating, polyaromatic π-system of graphene subsidiaries play a significant role in π–π interactions, hydrogen bonding, and/or electrostatic interactions with organic pollutants that include dyes, pharmaceutical waste, and agricultural and industrial effluents whose base structure consists of notably reactive unsaturated aromatic rings and oxygen-rich functional groups. The adsorption capacities of pollutants have been widely researched and catalogued by considering the adsorption isotherm (Langmuir, Freundlich, Temkin, DR model) they fit, the kinetic models (pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion) they follow, the parameters that affect the process (pH, temperature, etc.) and the reusability of the adsorbent. The photocatalytic efficiency has been anthologized with the viewpoint of the radicals being involved in photocatalysis and the light source used for the process. This review focuses on adsorption, advanced oxidation, and catalysis of various emerging organic pollutants using graphene subsidiaries, graphene-based composites, and hybrids; proves their efficacy as multifunctional materials for the expulsion of toxic aqueous phase pollutants; and presents new prospects for designing advanced water treatment strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.